scholarly journals Metabolic Rate Interacts with Resource Availability to Determine Individual Variation in Microhabitat Use in the Wild

2020 ◽  
Vol 196 (2) ◽  
pp. 132-144 ◽  
Author(s):  
Sonya K. Auer ◽  
Ronald D. Bassar ◽  
Daniel Turek ◽  
Graeme J. Anderson ◽  
Simon McKelvey ◽  
...  
2017 ◽  
Author(s):  
HyeJin Lee ◽  
Oksung Chung ◽  
Yun Sung Cho ◽  
Sungwoong Jho ◽  
JeHoon Jun ◽  
...  

AbstractThe red-crowned crane (Grus japonensis) is an endangered and large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is positively correlated with body size and negatively correlated with metabolic rate; although the genetic mechanisms for the red-crowned crane’s long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, we identified candidate genes that are correlated with longevity. Included among these are positively selected genes with known associations with longevity in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12 IL9R, SOD3, NUDT12, PNLIP, CTH, and RPA1). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and we hope this genome will provide a useful genetic resource for future conservation studies of this rare and iconic species.


2020 ◽  
Vol 34 (6) ◽  
pp. 1205-1214 ◽  
Author(s):  
Natalie Pilakouta ◽  
Shaun S. Killen ◽  
Bjarni K. Kristjánsson ◽  
Skúli Skúlason ◽  
Jan Lindström ◽  
...  

2017 ◽  
Vol 284 (1851) ◽  
pp. 20162481 ◽  
Author(s):  
Indrikis A. Krams ◽  
Petri T. Niemelä ◽  
Giedrius Trakimas ◽  
Ronalds Krams ◽  
Gordon M. Burghardt ◽  
...  

The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading.


2011 ◽  
Vol 279 (1727) ◽  
pp. 357-364 ◽  
Author(s):  
Shaun S. Killen ◽  
Stefano Marras ◽  
John F. Steffensen ◽  
David J. McKenzie

The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting of individuals to optimal spatial positions during changing conditions could influence structure or movement of entire schools.


Oikos ◽  
2019 ◽  
Vol 128 (11) ◽  
pp. 1633-1640 ◽  
Author(s):  
Tom Réveillon ◽  
Thibaut Rota ◽  
Éric Chauvet ◽  
Antoine Lecerf ◽  
Arnaud Sentis

2012 ◽  
Vol 9 (72) ◽  
pp. 1486-1498 ◽  
Author(s):  
Anthony A. Robson ◽  
Laurent Chauvaud ◽  
Rory P. Wilson ◽  
Lewis G. Halsey

Anthropogenic disturbance of farmed animals can be detrimental by adversely affecting behaviours and metabolic rate, potentially reducing their commercial value. However, relatively little is known about the normal behavioural time budgets and associated metabolism of many such species, particularly for example pectinid bivalves, which use anaerobic metabolism during periods of short-burst activity. In the present study, we used the accelerometry technique to measure scallop overall dynamic body acceleration in combination with respirometry in order to obtain and compare the behavioural time budgets and associated metabolism of 10 scallops, Pecten maximus , in an aquaculture hatchery and 10 in the wild. Scallops in the wild typically spent only 0.1 per cent of the time moving (less than 2 min d −1 ), yet, on average, the estimated metabolism of such movement represented 16.8 per cent of daily energy expenditure. Furthermore, owing to their reliance on anaerobic pathways during such activity, movement resulted in the wild scallops having a raised metabolic rate for, on average, an estimated 7.8 per cent of the time, during which oxygen debts accumulated during movement were paid off. Hatchery scallops also typically spent only 0.1 per cent of the time moving but estimated metabolism of such movement represented 41.8 per cent of daily energy expenditure. Estimated mean daily metabolism of scallops in the hatchery was significantly higher than scallops in the wild (169.1 versus 120.7 mg O 2 d −1 ) because anthropogenic disturbance in the hatchery caused energetically costly non-feeding behaviours. Consequently, hatchery scallops also spent a far greater amount of time with a raised metabolic rate (an estimated 26.6% of the time) than wild scallops. While short-term bursts of movement in pectinid bivalves may appear innocuous, they result in large expenditures of energy and an oxygen debt that is paid off over long periods of time that together limit further movement. These findings have implications for the farming industry; mitigating anthropogenic disturbances to farmed colonies may minimize non-feeding behaviours and hence maximize growth rates by reducing the costs of such movements and increasing the opportunity to feed.


2002 ◽  
Vol 205 (7) ◽  
pp. 1031-1036 ◽  
Author(s):  
Patrice Boily ◽  
Pierre Magnan

SUMMARY The objective of this study was to examine if individual variation in morphological characters is related to swimming costs in wild and domestic brook charr, and in wild yellow perch. Our results indicate that absolute swimming cost was higher in wild and domestic brook charr individuals having a stout body shape, and these individuals are therefore less efficient swimmers. These results are consistent with field observations that described relationships between individual variation in morphology and habitat use in salmonids. Further analyses indicated that standard metabolic rates were higher in individuals having a stout body shape, and that net swimming cost was not related to body shape. Accordingly, the higher swimming cost of stout individuals is probably an indirect consequence of an increase in standard metabolic rate. In wild yellow perch, absolute and net swimming costs were higher in individuals having a stout body shape and a low aspect caudal fin,and standard metabolic rate was not related to body shape. Therefore, in contrast to brook charr, individual variation in the swimming cost of yellow perch appears to be related to morphological characters that affect drag and thrust forces, which is consistent with previously published inter-specific observations.


Sign in / Sign up

Export Citation Format

Share Document