scholarly journals THE STELLAR MASS STRUCTURE OF MASSIVE GALAXIES FROMz= 0 TOz= 2.5: SURFACE DENSITY PROFILES AND HALF-MASS RADII

2013 ◽  
Vol 763 (2) ◽  
pp. 73 ◽  
Author(s):  
Daniel Szomoru ◽  
Marijn Franx ◽  
Pieter G. van Dokkum ◽  
Michele Trenti ◽  
Garth D. Illingworth ◽  
...  
2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


Author(s):  
Barun K Dhar

Abstract The Einasto profile has been successful in describing the density profiles of dark matter haloes in ΛCDM N-body simulations. It has also been able to describe multiple components in the surface brightness profiles of galaxies. However, analytically projecting it to calculate quantities under projection is challenging. In this paper, we will see the development of a highly accurate analytical approximation for the mass (or counts) enclosed in an infinitely long cylindrical column for Einasto profiles—also known as the projected mass (or counts)—using a novel methodology. We will then develop a self-consistent high accuracy model for the surface density from the expression for the projected mass. Both models are quite accurate for a broad family of functions, with a shape parameter α varying by a factor of 100 in the range 0.05 ≲ α ≲ 5.0, with fractional errors ∼10−6 for α ≲ 0.4. Profiles with α ≲ 0.4 have been shown to fit the density profiles of dark matter haloes in N-body simulations as well as the luminosity profiles of the outer components of massive galaxies. Since the projected mass and the surface density are used in gravitational lensing, I will illustrate how these models facilitate (for the first time) analytical computation of several quantities of interest in lensing due to Einasto profiles. The models, however, are not limited to lensing and apply to similar quantities under projection, such as the projected luminosity, the projected (columnar) number counts and the projected density or the surface brightness.


2020 ◽  
Vol 499 (1) ◽  
pp. 1172-1187
Author(s):  
Javier Zaragoza-Cardiel ◽  
Jacopo Fritz ◽  
Itziar Aretxaga ◽  
Yalia D Mayya ◽  
Daniel Rosa-González ◽  
...  

ABSTRACT We have applied stellar population synthesis to 500-pc-sized regions in a sample of 102 galaxy discs observed with the MUSE spectrograph. We derived the star formation history and analyse specifically the ‘recent’ ($20\,\rm {Myr}$) and ‘past’ ($570\,\rm {Myr}$) age bins. Using a star formation self-regulator model, we can derive local mass-loading factors, η for specific regions, and find that this factor depends on the local stellar mass surface density, Σ*, in agreement with the predictions form hydrodynamical simulations including supernova feedback. We integrate the local η–Σ* relation using the stellar mass surface density profiles from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to derive global mass-loading factors, ηG, as a function of stellar mass, M*. The ηG–M* relation found is in very good agreement with hydrodynamical cosmological zoom-in galaxy simulations. The method developed here offers a powerful way of testing different implementations of stellar feedback, to check on how realistic are their predictions.


Author(s):  
J Sánchez Almeida

Abstract The scatter in the galaxy size versus stellar mass (M⋆) relation gets largely reduced when, rather than the half-mass radius Re, the size at a fixed surface density is used. Here we address why this happens. We show how a reduction is to be expected because any two galaxies with the same M⋆ have at least one radius with identical surface density, where the galaxies have identical size. However, the reason why the scatter is reduced to the observed level is not trivial, and we pin it down to the galaxy surface density profiles approximately following Sersic profiles with their Re and Sersic index (n) anti-correlated (i.e., given M⋆, n increases when Re decreases). Our analytical results describe very well the behavior of the observed galaxies as portrayed in the NASA Sloan Atlas (NSA), which contains more than half a million local objects with 7 < log (M⋆/M⊙) < 11.5. The comparison with NSA galaxies also allows us to find the optimal values for the mass surface density ($2.4_{-0.9}^{+1.3}\, M_\odot \, {\rm pc}^{-2}$) and surface brightness (r-band 24.7 ± 0.5 mag arcsec−2) that minimize the scatter, although the actual values depend somehow on the subset of NSA galaxies used for optimization. The physical reason for the existence of optimal values is unknown but, as Trujillo et al. (2020) point out, they are close to the gas surface density threshold to form stars and thus may trace the physical end of a galaxy. Our NSA-based size–mass relation agrees with theirs on the slope as well as on the magnitude of the scatter. As a by-product of the narrowness of the size–mass relation (only 0.06 dex), we propose to use the size of a galaxy to measure its stellar mass. In terms of observing time, it is not more demanding than the usual photometric techniques and may present practical advantages in particular cases.


2019 ◽  
Vol 489 (1) ◽  
pp. 842-854 ◽  
Author(s):  
Dandan Xu ◽  
Ling Zhu ◽  
Robert Grand ◽  
Volker Springel ◽  
Shude Mao ◽  
...  

ABSTRACT Motivated by the recently discovered kinematic ‘Hubble sequence’ shown by the stellar orbit-circularity distribution of 260 CALIFA galaxies, we make use of a comparable galaxy sample at z = 0 with a stellar mass range of $M_{*}/\mathrm{M}_{\odot }\in [10^{9.7},\, 10^{11.4}]$ selected from the IllustrisTNG simulation and study their stellar orbit compositions in relation to a number of other fundamental galaxy properties. We find that the TNG100 simulation broadly reproduces the observed fractions of different orbital components and their stellar mass dependences. In particular, the mean mass dependences of the luminosity fractions for the kinematically warm and hot orbits are well reproduced within model uncertainties of the observed galaxies. The simulation also largely reproduces the observed peak and trough features at $M_{*}\approx 1\rm {-}2\times 10^{10}\, \mathrm{M}_{\odot }$ in the mean distributions of the cold- and hot-orbit fractions, respectively, indicating fewer cooler orbits and more hotter orbits in both more- and less-massive galaxies beyond such a mass range. Several marginal disagreements are seen between the simulation and observations: the average cold-orbit (counter-rotating) fractions of the simulated galaxies below (above) $M_{*}\approx 6\times 10^{10}\, \mathrm{M}_{\odot }$ are systematically higher than the observational data by $\lesssim 10{{\ \rm per\ cent}}$ (absolute orbital fraction); the simulation also seems to produce more scatter for the cold-orbit fraction and less so for the non-cold orbits at any given galaxy mass. Possible causes that stem from the adopted heating mechanisms are discussed.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


1979 ◽  
Vol 19 (5) ◽  
pp. 659-664 ◽  
Author(s):  
Linda V. Powers ◽  
G.R. Montry ◽  
R.L. Berger

2021 ◽  
Vol 921 (2) ◽  
pp. 125
Author(s):  
Jorge Sánchez Almeida ◽  
Ignacio Trujillo ◽  
Angel R. Plastino

Sign in / Sign up

Export Citation Format

Share Document