ERRATUM: “SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS” (2012, ApJ, 753, 51)

2014 ◽  
Vol 781 (1) ◽  
pp. 56 ◽  
Author(s):  
Andrés E. Guzmán ◽  
Guido Garay ◽  
Kate J. Brooks ◽  
Maxim A. Voronkov
2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2012 ◽  
Vol 753 (1) ◽  
pp. 51 ◽  
Author(s):  
Andrés E. Guzmán ◽  
Guido Garay ◽  
Kate J. Brooks ◽  
Maxim A. Voronkov

2012 ◽  
Vol 8 (S292) ◽  
pp. 42-42
Author(s):  
Cong-Gui Gan ◽  
Xi Chen ◽  
Zhi-Qiang Shen

AbstractWe performed polarization sensitive VLBI observations of 6.7 GHz methanol masers toward high-mass young stellar objects with clear outflow seen from Spitzer IRAC images in the 4.5 μm band (i.e. EGOs, see Cyganowski et al. 2008) with the EVN to investigate the birthplace of the masers. By comparing direction of the major axis of methanol maser distributions with directions of higher resolution outflow and magnetic field vector, we suggest that the methanol masers toward source G28.83-0.25 may arise from surrounding disk.


2021 ◽  
Author(s):  
Xi Chen ◽  
Zhiyuan Ren ◽  
Da-Lei Li ◽  
Tie Liu ◽  
Ke Wang ◽  
...  

Abstract Theoretical models and numerical simulations suggest that high mass star (with mass > 8 solar mass) can be formed either via monolithic collapse of a massive core or competitive accretion, but the dominant mechanism is currently unclear. Although recent high resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have detected physical and kinematic features, such as disks, outflows and filamentary structures surrounding the high mass young stellar objects (HMYSO), direct detection of the infalling gas towards the HMYSO is still the key to distinguish the different scenarios. Chemically fresh gas inflows have been detected towards low-mass stars being formed, which are consistent with the accretion-disk-outflow process. In this work we report the detection of a chemically fresh inflow which is feeding HMYSO growth in the nearby high mass star-forming region G352.63-1.07. High quality images of the dust and molecular lines from both ALMA and the Submillimeter Array (SMA) have consistently revealed a gravitationally-controlled gas inflow towards a rotating structure (disk or torus) around the HMYSO. The HMYSO is also observed to have an outflow, but it can be clearly separated from the inflow. These kinematic features provide observational evidence to support the conjecture that high-mass stars can be formed in a similar process to that observed in the low-mass counterparts. The chemically fresh infalling streamers could also be related with the disk configuration, fragmentation and accretion bursts that occur in both simulations and observations.


2019 ◽  
Vol 621 ◽  
pp. L7 ◽  
Author(s):  
A. Giannetti ◽  
S. Bovino ◽  
P. Caselli ◽  
S. Leurini ◽  
D. R. G. Schleicher ◽  
...  

Context. In cold and dense gas prior to the formation of young stellar objects, heavy molecular species (including CO) are accreted onto dust grains. Under these conditions H3+ and its deuterated isotopologues become more abundant, enhancing the deuterium fraction of molecules such as N2H+ that are formed via ion-neutral reactions. Because this process is extremely temperature sensitive, the abundance of these species is likely linked to the evolutionary stage of the source. Aims. We investigate how the abundances of o-H2D+ and N2D+ vary with evolution in high-mass clumps. Methods. We observed with APEX the ground-state transitions of o-H2D+ near 372 GHz, and N2D+(3–2) near 231 GHz for three massive clumps in different evolutionary stages. The sources were selected within the G351.77–0.51 complex to minimise the variation of initial chemical conditions, and to remove distance effects. We modelled their dust continuum emission to estimate their physical properties, and also modelled their spectra under the assumption of local thermodynamic equilibrium to calculate beam-averaged abundances. Results. We find an anticorrelation between the abundance of o-H2D+ and that of N2D+, with the former decreasing and the latter increasing with evolution. With the new observations we are also able to provide a qualitative upper limit to the age of the youngest clump of about 105 yr, comparable to its current free-fall time. Conclusions. We can explain the evolution of the two tracers with simple considerations on the chemical formation paths, depletion of heavy elements, and evaporation from the grains. We therefore propose that the joint observation and the relative abundance of o-H2D+ and N2D+ can act as an efficient tracer of the evolutionary stages of the star-formation process.


2009 ◽  
Vol 700 (1) ◽  
pp. 872-886 ◽  
Author(s):  
S. Bruderer ◽  
A.O. Benz ◽  
S. D. Doty ◽  
E. F. van Dishoeck ◽  
T. L. Bourke

Author(s):  
Ryohei Harada ◽  
Toshikazu Onishi ◽  
Kazuki Tokuda ◽  
Sarolta Zahorecz ◽  
Annie Hughes ◽  
...  

Abstract The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud. High-mass stars usually form in giant molecular clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1–0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high density and high temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ∼40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.


2018 ◽  
Vol 14 (A30) ◽  
pp. 102-102
Author(s):  
Jungmi Kwon

AbstractMagnetic fields are ubiquitous in various scales of astronomical objects, and they are considered as playing significant roles from star to galaxy formations. However, the role of the magnetic fields in star forming regions is less well understood because conventional optical polarimetry is hampered by heavy extinction by dust. We have been conducting extensive near-infrared polarization survey of various star-forming regions from low- and intermediate-mass to high-mass star-forming regions, using IRSF/SIRPOL in South Africa. Not only linear but also circular polarizations have been measured for more than a dozen of regions. Both linear and circular polarimetric observations at near-infrared wavelengths are useful tools to study the magnetic fields in star forming regions, although infrared circular polarimetry has been less explored so far. In this presentation, we summarize our results of the near-infrared polarization survey of star forming regions and its comparison with recent submillimeter polarimetry results. Such multi-wavelength approaches can be extended to the polarimetry using ALMA, SPICA in future, and others. We also present our recent results of the first near-infrared imaging polarimetry of young stellar objects in the Circinus molecular cloud, which has been less studied but a very intriguing cluster containing numerous signs of active low-mass star formation.


2017 ◽  
Vol 13 (S336) ◽  
pp. 37-40 ◽  
Author(s):  
Bringfried Stecklum ◽  
Alessio Caratti o Garatti ◽  
Klaus Hodapp ◽  
Hendrik Linz ◽  
Luca Moscadelli ◽  
...  

AbstractMethanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates the identification of its cause. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.


Sign in / Sign up

Export Citation Format

Share Document