XeBr excilamp based on a non-toxic component mixture

2011 ◽  
Vol 44 (25) ◽  
pp. 255202 ◽  
Author(s):  
V A Kelman ◽  
Yu O Shpenik ◽  
Yu V Zhmenyak
1997 ◽  
Vol 90 (4) ◽  
pp. 679-681
Author(s):  
F. SAIJA ◽  
G. FIUMARA ◽  
P.V. GIAQUINTA

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1838
Author(s):  
Evgeny Yakovlev ◽  
Igor Tokarev ◽  
Sergey Zykov ◽  
Stanislav Iglovsky ◽  
Nikolay Ivanchenko

The isotopic (234U/238U, 2H, 18O) and chemical composition of groundwater on the right bank of the Volga River along the middle reach (European Russia) was studied down to a depth of 400 m. These data allow diagnosis of the presence of a three-component mixture. The first component is modern/young fresh recharge water of the Holocene age. It has the isotopic composition of water δ18O → −12.9 ‰ and δ2H → −90 ‰, close to modern precipitations, and the equilibrium isotopic composition of uranium 234U/238U → 1 (by activity). The second component is slightly salted water of the late or postglacial period with δ18O → −17.0 ‰ and δ2H → −119 ‰, and a small excess of uranium-234 234U/238U ≈ 4. The third component is meltwater formed as result of permafrost thawing. It is brackish water with δ18O ≈ −15.0 ‰ and δ2H ≈ −110 ‰, and a maximum excess of uranium-234 234U/238U ≈ 15.7. The salinity of this water is associated with an increase of the SO42−, Ca2+ and Na+ content, and this may be due to the presence of gypsum in water-bearing sediments, because the solubility of sulfates increases at near-zero temperature. We explain the huge excess of uranium-234 by its accumulation in the mineral lattice during the glacial age and quick leaching after thawing of permafrost.


Author(s):  
Nabarun Deb ◽  
Sujayam Saha ◽  
Adityanand Guntuboyina ◽  
Bodhisattva Sen

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 955
Author(s):  
Damir Madjarević ◽  
Milana Pavić-Čolić ◽  
Srboljub Simić

The shock structure problem is studied for a multi-component mixture of Euler fluids described by the hyperbolic system of balance laws. The model is developed in the framework of extended thermodynamics. Thanks to the equivalence with the kinetic theory approach, phenomenological coefficients are computed from the linearized weak form of the collision operator. Shock structure is analyzed for a three-component mixture of polyatomic gases, and for various combinations of parameters of the model (Mach number, equilibrium concentrations and molecular mass ratios). The analysis revealed that three-component mixtures possess distinguishing features different from the binary ones, and that certain behavior may be attributed to polyatomic structure of the constituents. The multi-temperature model is compared with a single-temperature one, and the difference between the mean temperatures of the mixture are computed. Mechanical and thermal relaxation times are computed along the shock profiles, and revealed that the thermal ones are smaller in the case discussed in this study.


Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 21
Author(s):  
Fabrizia Guglielmetti ◽  
Eric Villard ◽  
Ed Fomalont

A stable and unique solution to the ill-posed inverse problem in radio synthesis image analysis is sought employing Bayesian probability theory combined with a probabilistic two-component mixture model. The solution of the ill-posed inverse problem is given by inferring the values of model parameters defined to describe completely the physical system arised by the data. The analysed data are calibrated visibilities, Fourier transformed from the ( u , v ) to image planes. Adaptive splines are explored to model the cumbersome background model corrupted by the largely varying dirty beam in the image plane. The de-convolution process of the dirty image from the dirty beam is tackled in probability space. Probability maps in source detection at several resolution values quantify the acquired knowledge on the celestial source distribution from a given state of information. The information available are data constrains, prior knowledge and uncertain information. The novel algorithm has the aim to provide an alternative imaging task for the use of the Atacama Large Millimeter/Submillimeter Array (ALMA) in support of the widely used Common Astronomy Software Applications (CASA) enhancing the capabilities in source detection.


Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Tomasz Bury

Abstract The problem of hydrogen behavior in containment buildings of nuclear reactors belongs to thermal-hydraulic area. Taking into account the size of systems under consideration and, first of all, safety issues, such type of analyses cannot be done by means of full-scale experiments. Therefore, mathematical modeling and numerical simulations are widely used for these purposes. A lumped parameter approach based code HEPCAL has been elaborated in the Institute of Thermal Technology of the Silesian University of Technology for simulations of pressurized water reactor containment transient response. The VVER-440/213 and European pressurised water reactor (EPR) reactors containments are the subjects of analysis within the framework of this paper. Simulations have been realized for the loss-of-coolant accident scenarios with emergency core cooling system failure. These scenarios include core overheating and hydrogen generation. Passive autocatalytic recombiners installed for removal of hydrogen has been taken into account. The operational efficiency of the hydrogen removal system has been evaluated by comparing with an actual hydrogen concentration and flammability limit. This limit has been determined for the three-component mixture of air, steam and hydrogen. Some problems related to the lumped parameter approach application have been also identified.


ChemInform ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. no-no
Author(s):  
Uvidelio Francisco Castillo ◽  
Youji Sakagami ◽  
Miguel Alonso-Amelot ◽  
Makoto Ojika

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


Sign in / Sign up

Export Citation Format

Share Document