Axisymmetric MHD modes in a homogeneous toroidal plasma of arbitrary meridional cross-section and arbitrary aspect ratio

1989 ◽  
Vol 29 (9) ◽  
pp. 1469-1478 ◽  
Author(s):  
F.F. Cap ◽  
N. Schupfer
1990 ◽  
Vol 44 (2) ◽  
pp. 303-311 ◽  
Author(s):  
M. Y. Kucinski ◽  
I. L. Caldas ◽  
L. H. A. Monteiro ◽  
V. Okano

A new System of co-ordinates is found and a method developed to determine the toroidal equilibrium of plasmas with arbitrary current distribution and plasma cross-section. The method depends on knowledge of the equilibrium of a straight plasma column of similar cross-section and similar current distribution. A large aspect ratio is assumed. By successive approximations, better solutions can be obtained. An explicit formula is presented for the poloidal flux of a nearly circular plasma. This can be written in terms of a function related to the asymmetry of the poloidal field due to toroidality. The method works provided that there is only one magnetic axis.


2004 ◽  
Vol 412-414 ◽  
pp. 1045-1049 ◽  
Author(s):  
K. Kajikawa ◽  
T. Hayashi ◽  
K. Funaki ◽  
E.S. Otabe ◽  
T. Matsushita

Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


1975 ◽  
Vol 14 (1) ◽  
pp. 25-37 ◽  
Author(s):  
John D. Love

The normal modes of oscillation of a cold dielectric plasma ring are analysed in the quasi-electrostatic approximation. An exact dispersion relation is derived, valid for all aspect ratios. Its solutions are shown to be extremely close to those of an infinite cylindrical plasma with cross-section equal to the minor cross-section of the ring, when the cylinder is considered as a wavelength-preserving limit of the toroidal geometry.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Yury Kravtsov ◽  
Janusz Chrzanowski

AbstractThe Cotton-Mouton effect in sheared plasma with helical magnetic lines is studied on the basis of the equation for complex amplitude ratio (CAR). A simple model for helical magnetic lines in sheared plasma of toroidal configuration is suggested. The equation for CAR in the sheared plasma is solved by perturbation method, using the small shear angle deviations as is characteristic for tokamak plasma. It is shown that the inaccuracy in polarization measurements caused by deviations of the sheared angle amounts to some percentage of the shearless Cotton-Mouton phase shift. One suggested method is to subtract the “sheared” term, which may improve the accuracy of the Cotton-Mouton measurements in the sheared plasma.


Author(s):  
Carlos Rodríguez-Mondéjar ◽  
Álvaro Rodríguez-Prieto ◽  
Ana María Camacho

Abstract Injection overmolding process is a high versatile process that permits, when used in combination with fiber reinforced thermoplastic composites, the obtaining of high mechanical properties structures with complex geometries in short time cycles. The maximum flow length is a parameter that reflects the success of filling in a polymer injection molding process. Geometry of the part, rheological properties of the polymer and process parameters, such as injection pressure and temperature, are involved on the value of this parameter and therefore on the viability of a certain configuration. For injection molding manufacturing, the understanding of the relation between maximum flow length and main geometrical parameters of the molded part is fundamental to approach the product design, which is conditioned severely by processing capabilities. In this work, the maximum flow length is obtained for different geometries of an overmolded rectangular stiffener grid of carbon fiber filled polyether eter ketone (CF-PEEK) using the software Moldflow© Adviser© for calculations. Value of maximum flow length is provided as a function of cross section aspect ratio for gate diameters between 0.8 mm and 1.4 mm and cross section areas from 10 to 50 mm2. An exponential decrement of maximum flow length has been observed with the increment of aspect ratio of the cross section as well as a linear increment with the increment of cross section area. Gate diameter variation is slightly related with maximum flow length for the simulated values. These results provide a support tool for geometry sizing in overmolded rectangular grid parts at preliminary design stages.


Sign in / Sign up

Export Citation Format

Share Document