Analytic Solutions to Forced KdV Equation

2009 ◽  
Vol 52 (2) ◽  
pp. 279-283 ◽  
Author(s):  
Zhao Jun-Xiao ◽  
Guo Bo-Ling
1999 ◽  
Vol 09 (04) ◽  
pp. 571-590 ◽  
Author(s):  
ANDREW C. SINGER ◽  
ALAN V. OPPENHEIM

Recently, a large class of nonlinear systems which possess soliton solutions has been discovered for which exact analytic solutions can be found. Solitons are eigenfunctions of these systems which satisfy a form of superposition and display rich signal dynamics as they interact. In this paper, we view solitons as signals and consider exploiting these systems as specialized signal processors which are naturally suited to a number of complex signal processing tasks. New circuit models are presented for two soliton systems, the Toda lattice and the discrete-KdV equations. These analog circuits can generate and process soliton signals and can be used as multiplexers and demultiplexers in a number of potential soliton-based wireless communication applications discussed in [Singer et al.]. A hardware implementation of the Toda lattice circuit is presented, along with a detailed analysis of the dynamics of the system in the presence of additive Gaussian noise. This circuit model appears to be the first such circuit sufficiently accurate to demonstrate true overtaking soliton collisions with a small number of nodes. The discrete-KdV equation, which was largely ignored for having no prior electrical or mechanical analog, provides a convenient means for processing discrete-time soliton signals.


2010 ◽  
Vol 19 (8) ◽  
pp. 080204 ◽  
Author(s):  
Zhao Guo-Zhong ◽  
Yu Xi-Jun ◽  
Xu Yun ◽  
Zhu Jiang ◽  
Wu Di

2017 ◽  
Vol 14 (04) ◽  
pp. 1750041 ◽  
Author(s):  
V. M. Magagula ◽  
S. S. Motsa ◽  
P. Sibanda

In this paper, we present a new general approach for solving nonlinear evolution partial differential equations. The novelty of the approach is in the combination of spectral collocation and Lagrange interpolation polynomials with Legendre–Gauss–Lobatto grid points to descritize and solve equations in piece-wise defined intervals. The method is used to solve several nonlinear evolution partial differential equations, namely, the modified KdV–Burgers equation, modified KdV equation, Fisher’s equation, Burgers–Fisher equation, Burgers–Huxley equation and the Fitzhugh–Nagumo equation. The results are compared with known analytic solutions to confirm accuracy, convergence and to get a general understanding of the performance of the method. In all the numerical experiments, we report a high degree of accuracy of the numerical solutions. Strategies for implementing various boundary conditions are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jincun Liu ◽  
Hong Li

By introducing the fractional derivative in the sense of Caputo and combining the pretreatment technique to deal with long nonlinear items, the generalized two-dimensional differential transform method is proposed for solving the time-fractional Hirota-Satsuma coupled KdV equation and coupled MKdV equation. The presented method is a numerical method based on the generalized Taylor series expansion which constructs an analytical solution in the form of a polynomial. The numerical results show that the generalized two-dimensional differential transform method is very effective for the fractional coupled equations.


2008 ◽  
Vol 19 (11) ◽  
pp. 1659-1671 ◽  
Author(s):  
FU-WEI SUN ◽  
YI-TIAN GAO ◽  
CHUN-YI ZHANG ◽  
XIAO-GE XU

We investigate a generalized variable-coefficient modified Korteweg–de Vries model with perturbed factor and external force (vc-GmKdV) describing fluid dynamics and space plasmas. In this paper, we propose an extended variable-coefficient balancing-act method (Evc-BAM), which is concise and straightforward, to obtain the generalized analytic solutions including solitary wave solution of the vc-GmKdV model with symbolic computation. Meanwhile, using the Evc-BAM, we obtain an auto-Bäcklund transformation for the vc-GmKdV model on the relevant constraint conditions of the coefficient functions. Using the given auto-Bäcklund transformation, the solutions of special equations for the vc-GmKdV model are also obtained as the variable-coefficient Korteweg–de Vries (vc-KdV) equation, the generalized KdV equation with perturbed factor and external force (GKdV), the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation, and the variable-coefficient cylindrical modified Korteweg–de Vries (vc-cmKdV) equation, respectively.


2020 ◽  
Vol 34 (26) ◽  
pp. 2050279
Author(s):  
Noufe H. Aljahdaly ◽  
Aly R. Seadawy ◽  
Wafaa A. Albarakati

Finding solitary wave solutions of Nonlinear evolution equations are of great interest. The direct algebraic method was used here to find the analytic solutions to the generalized seventh-order KdV equation which plays an important role in engineering and mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document