Information Leakage in Quantum Dialogue by Using Non-Symmetric Quantum Channel

2017 ◽  
Vol 67 (5) ◽  
pp. 507 ◽  
Author(s):  
Gan Gao ◽  
Wei-Yan Li ◽  
Yue Wang
2019 ◽  
Vol 33 (05) ◽  
pp. 1950033 ◽  
Author(s):  
Ming-Hui Zhang ◽  
Jin-Ye Peng ◽  
Zheng-Wen Cao

Quantum dialogue can realize the mutual transmission of secret information between two legal users. In most of the existing quantum dialogue protocols, the information carriers applied in quantum dialogue are discrete variable (DV) quantum states. However, there are certain limitations on the preparation and detection of DV quantum states with current techniques. Continuous variable (CV) quantum states can overcome these problems effectively while improving the quantum channel capacity. In this paper, we propose a quantum dialogue protocol with four-mode continuous variable GHZ state. Compared with the existing CV-based quantum dialogue protocols, the protocol allows two users to transmit two groups of secret information with different lengths to each other simultaneously. The channel capacity of the protocol has been improved as each traveling mode carries two- or four-bits of information. In addition, the protocol has been proved to be secure against information leakage problem and some common attacks, such as beam splitter attack and intercept-and-resend attack.


2010 ◽  
Vol 53 (4) ◽  
pp. 648-652 ◽  
Author(s):  
Zhan You-Bang ◽  
Zhang Ling-Ling ◽  
Wang Yu-Wu ◽  
Zhang Qun-Yong

2014 ◽  
Vol 14 (7&8) ◽  
pp. 589-607
Author(s):  
Xiu-Bo Chen ◽  
Gang Xu ◽  
Yuan Su ◽  
Yi-Xian Yang

In this paper, the perfect secret sharing in quantum cryptography is investigated. On one hand, the security of a recent protocol [Adhikari et al. Quantum Inform. \& Comput. 12 (2012) 0253-0261] is re-examined. We find that it violates the requirement of information theoretic security in the secret sharing and suffers from the information leakage. The cryptanalysis including several specific attack strategies are given, which shows that a dishonest participant can steal half or all of the secrets without being detected. On the other hand, we design a new quantum secret sharing protocol. The security of protocol is rigorously proved. It meets the fundamental requirement of information theoretic security. Furthermore, the security analysis including both the outside attacks and participant attacks is given in details. It is shown that our proposed protocol can achieve perfect secret sharing.


2014 ◽  
Vol 53 (11) ◽  
pp. 3829-3837 ◽  
Author(s):  
Nan-Run Zhou ◽  
Tian-Xiang Hua ◽  
Gui-Tong Wu ◽  
Chao-Sheng He ◽  
Ye Zhang

2021 ◽  
Vol 21 (3&4) ◽  
pp. 0203-0232
Author(s):  
Nayana Das ◽  
Goutam Paul

Quantum conference is a process of securely exchanging messages between three or more parties, using quantum resources. A Measurement Device Independent Quantum Dialogue (MDI-QD) protocol, which is secure against information leakage, has been proposed (Quantum Information Processing 16.12 (2017): 305) in 2017, is proven to be insecure against intercept-and-resend attack strategy. We first modify this protocol and generalize this MDI-QD to a three-party quantum conference and then to a multi-party quantum conference. We also propose a protocol for quantum multi-party XOR computation. None of these three protocols proposed here use entanglement as a resource and we prove the correctness and security of our proposed protocols.


2017 ◽  
Vol 17 (3&4) ◽  
pp. 209-241
Author(s):  
Walter O. Krawec

In this paper, we derive key-rate expressions for different quantum key distribution protocols. Our key-rate equations utilize multiple channel statistics, including those gathered from mismatched measurement bases - i.e., when Alice and Bob choose incompatible bases. In particular, we will consider an Extended B92 and a two-way semi-quantum protocol. For both these protocols, we demonstrate that their tolerance to noise is higher than previously thought - in fact, we will show the semi-quantum protocol can actually tolerate the same noise level as the fully quantum BB84 protocol. Along the way, we will also consider an optimal QKD protocol for various quantum channels. Finally, all the key-rate expressions which we derive in this paper are applicable to any arbitrary, not necessarily symmetric, quantum channel.


2020 ◽  
Vol 18 (04) ◽  
pp. 2050009 ◽  
Author(s):  
Ashwin Saxena ◽  
Kishore Thapliyal ◽  
Anirban Pathak

A continuous variable (CV) controlled quantum dialogue (QD) scheme is proposed. The scheme is further modified to obtain two other protocols of (CV) secure multiparty computation. The first one of these protocols provides a solution of two-party socialist millionaire problem, while the second protocol provides a solution for a special type of multi-party socialist millionaire problem which can be viewed as a protocol for multiparty quantum private comparison. It is shown that the proposed scheme of (CV) controlled (QD) can be performed using bipartite entanglement and can be reduced to obtain several other two- and three-party cryptographic schemes in the limiting cases. The security of the proposed scheme and its advantage over corresponding discrete variable (DV) counterpart are also discussed. Specifically, the ignorance of an eavesdropper, i.e., information encoded by Alice/Bob, in the proposed scheme is shown to be more than that in the corresponding (DV) scheme, and thus the present scheme is less prone to information leakage inherent with the (DV) (QD) based schemes. It is further established that the proposed scheme can be viewed as a (CV) counterpart of quantum cryptographic switch which allows a supervisor to control the information transferred between the two legitimate parties to a continuously varying degree.


Sign in / Sign up

Export Citation Format

Share Document