scholarly journals Reconstruction of nonlinear material properties for homogeneous, isotropic slabs using electromagnetic waves

1999 ◽  
Vol 15 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Daniel Sjöberg
2018 ◽  
Vol 140 (11) ◽  
Author(s):  
A. Delissen ◽  
G. Radaelli ◽  
L. A. Shaw ◽  
J. B. Hopkins ◽  
J. L. Herder

A great deal of engineering effort is focused on changing mechanical material properties by creating microstructural architectures instead of modifying chemical composition. This results in meta-materials, which can exhibit properties not found in natural materials and can be tuned to the needs of the user. To change Poisson's ratio and Young's modulus, many current designs exploit mechanisms and hinges to obtain the desired behavior. However, this can lead to nonlinear material properties and anisotropy, especially for large strains. In this work, we propose a new material design that makes use of curved leaf springs in a planar lattice. First, analytical ideal springs are employed to establish sufficient conditions for linear elasticity, isotropy, and a zero Poisson's ratio. Additionally, Young's modulus is directly related to the spring stiffness. Second, a design method from the literature is employed to obtain a spring, closely matching the desired properties. Next, numerical simulations of larger lattices show that the expectations hold, and a feasible material design is presented with an in-plane Young's modulus error of only 2% and Poisson's ratio of 2.78×10−3. These properties are isotropic and linear up to compressive and tensile strains of 0.12. The manufacturability and validity of the numerical model is shown by a prototype.


Author(s):  
Junpeng Liu ◽  
Jinsheng Ma ◽  
Murilo Augusto Vaz ◽  
Menglan Duan

Abstract Mechanical behavior of flexible risers can be challenging due largely to its complex design generating strong nonlinear problems. Nonlinear material properties, as one of them, from polymer layers dominate the overall viscoelastic responses of flexible risers which may play an inevitable role on the global analysis in deepwater application. An alternative to predict the viscoelastic behavior comprising of the time domain and the frequency domain has been proposed recently by the authors (Liu and Vaz, 2016). Given the fact that polymeric material properties are temperature-dependent and that the temperature profiles in flexile risers vary continuously in both axial and radial direction, the temperature of the internal hydrocarbons must affect the viscoelastic responses. However, such phenomenon dose not draw much attention in previous studies. This paper presents an improved model for overcoming some drawbacks in the proposed model involving assumption of steady temperature distribution in polymer layer and no gap appearance between the adjacent layers. The computing method of model is developed by using a step by step test approach. Consequently, some important parameters like equivalent axial stiffness, contact pressure or gap between the near layers, and force-deformation relationship can be observed. Parametric studies are conducted on the axisymmetric viscoelastic behavior of flexible risers to study the role of input temperature and loading frequency. Results show that equivalent axial stiffness given by the improved model is smaller than before. It can also be found that the gap between metal layer and polymer layer appear easily and increases as time goes on.


1991 ◽  
Vol 113 (4) ◽  
pp. 353-360 ◽  
Author(s):  
J. C. Lotz ◽  
E. J. Cheal ◽  
W. C. Hayes

Over 90 percent of the more than 250,000 hip fractures that occur annually in the United States are the result of falls from standing height. Despite this, the stresses associated with femoral fracture from a fall have not been investigated previously. Our objectives were to use three-dimensional finite element models of the proximal femur (with geometries and material properties based directly on quantitative computed tomography) to compare predicted stress distributions for one-legged stance and for a fall to the lateral greater trochanter. We also wished to test the correspondence between model predictions and in vitro strain gage data and failure loads for cadaveric femora subjected to these loading conditions. An additional goal was to use the model predictions to compare the sensitivity of several imaging sites in the proximal femur which are used for the in vivo prediction of hip fracture risk. In this first of two parts, linear finite element models of two unpaired human cadaveric femora were generated. In Part II, the models were extended to include nonlinear material properties for the cortical and trabecular bone. While there was poor correspondence between strain gage data and model predictions, there was excellent agreement between the in vitro failure data and the linear model, especially using a von Mises effective strain failure criterion. Both the onset of structural yielding (within 22 and 4 percent) and the load at fracture (within 8 and 5 percent) were predicted accurately for the two femora tested. For the simulation of one-legged stance, the peak stresses occurred in the primary compressive trabeculae of the subcapital region. However, for a simulated fall, the peak stresses were in the intertrochanteric region. The Ward’s triangle (basicervical) site commonly used for the clinical assessment of osteoporosis was not heavily loaded in either situation. These findings suggest that the intertrochanteric region may be the most sensitive site for the assessment of fracture risk due to a fall and the subcapital region for fracture risk due to repetitive activities such as walking.


Author(s):  
Joshua Robbins ◽  
Pavel M. Chaplya

Ferroelectric ceramics can be tailored at the microscale to have an ordered arrangement of crystal axes. Such grain-oriented ceramics can exhibit material properties far superior to conventional ceramics with random microstructure. A microstructurally based numerical model has been developed that describes the 3D non-linear behavior of ferroelectric ceramics. The model resolves the polycrystalline structure directly in the topology of the problem domain. The developed model is used to predict the effect of microstructural modifications on material behavior. In particular, we examine the internal residual stress after poling for idealized configurations of random and grain-oriented microstructures. The results indicate that a grain-ordered microstructure produces a significant increase in remanent polarization without detriment to internal residual stress.


Sign in / Sign up

Export Citation Format

Share Document