Electrical resistivity of thin films of AuCo solid solutions

1981 ◽  
Vol 11 (12) ◽  
pp. 2575-2584 ◽  
Author(s):  
U Henger ◽  
D Korn
AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045124
Author(s):  
Cacie Hart ◽  
Zoey Warecki ◽  
Grace Yong ◽  
David Houston ◽  
Rajeswari Kolagani

1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2014 ◽  
Vol 11 (9-10) ◽  
pp. 1423-1426 ◽  
Author(s):  
Yutaka Sakurai ◽  
Yuya Takeda ◽  
Shinji Ikeda ◽  
Yoshinori Sakamoto

2021 ◽  
Author(s):  
Ningning Wang ◽  
Mingwei Yang ◽  
Keyu Chen ◽  
Zhen Yang ◽  
Hua Zhang ◽  
...  

Abstract The successful synthesis of superconducting nickelate thin films with the highest Tc ~ 15 K has reignited great enthusiasms on this class of potential analogue to high-Tc cuprates suggested decades ago. To pursue higher Tc is always an important task in studying new superconductors. Here we report for the first time the effect of pressure on the superconducting properties of infinite-layer Pr0.82Sr0.18NiO2 thin films by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus. We find that the onset of superconductivity, Tconset, can be enhanced monotonically from ~ 18 K at ambient pressure to ~ 31 K without showing signatures of saturation upon increasing pressure to 12.1 GPa in the presence of liquid pressure transmitting medium. This encouraging result indicates that the Tc of infinite-layer nickelates superconductors can be further raised up by applying higher pressures or strain engineering in the heterostructure films. In addition to the pressure effect, we also discussed the influence of stress/strain on the superconducting properties of the nickelate thin films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hendrik Wulfmeier ◽  
Dhyan Kohlmann ◽  
Thomas Defferriere ◽  
Carsten Steiner ◽  
Ralf Moos ◽  
...  

Abstract The chemical expansion of Pr0.1Ce0.9O2–δ (PCO) and CeO2–δ thin films is investigated in the temperature range between 600 °C and 800 °C by laser Doppler vibrometry (LDV). It enables non-contact determination of nanometer scale changes in film thickness at high temperatures. The present study is the first systematic and detailed investigation of chemical expansion of doped and undoped ceria thin films at temperatures above 650 °C. The thin films were deposited on yttria stabilized zirconia substrates (YSZ), operated as an electrochemical oxygen pump, to periodically adjust the oxygen activity in the films, leading to reversible expansion and contraction of the film. This further leads to stresses in the underlying YSZ substrates, accompanied by bending of the overall devices. Film thickness changes and sample bending are found to reach up to 10 and several hundred nanometers, respectively, at excitation frequencies from 0.1 to 10 Hz and applied voltages from 0–0.75 V for PCO and 0–1 V for ceria. At low frequencies, equilibrium conditions are approached. As a consequence maximum thin-film expansion of PCO is expected due to full reduction of the Pr ions. The lower detection limit for displacements is found to be in the subnanometer range. At 800 °C and an excitation frequency of 1 Hz, the LDV shows a remarkable resolution of 0.3 nm which allows, for example, the characterization of materials with small levels of expansion, such as undoped ceria at high oxygen partial pressure. As the correlation between film expansion and sample bending is obtained through this study, a dimensional change of a free body consisting of the same material can be calculated using the high resolution characteristics of this system. A minimum detectable dimensional change of 5 pm is estimated even under challenging high-temperature conditions at 800 °C opening up opportunities to investigate electro-chemo-mechanical phenomena heretofore impossible to investigate. The expansion data are correlated with previous results on the oxygen nonstoichiometry of PCO thin films, and a defect model for bulk ceria solid solutions is adopted to calculate the cation and anion radii changes in the constrained films during chemical expansion. The constrained films exhibit anisotropic volume expansion with displacements perpendicular to the substrate plane nearly double that of bulk samples. The PCO films used here generate high total displacements of several 100 nm’s with high reproducibility. Consequently, PCO films are identified to be a potential core component of high-temperature actuators. They benefit not only from high displacements at temperatures where most piezoelectric materials no longer operate while exhibiting, low voltage operation and low energy consumption.


1973 ◽  
Vol 18 (1) ◽  
pp. 71-75 ◽  
Author(s):  
B.M.S. Bist ◽  
O.N. Srivastava

Sign in / Sign up

Export Citation Format

Share Document