The cosmic-ray anisotropy and the relative fluxes of heavy nuclei and protons in high-energy cosmic radiation

1986 ◽  
Vol 12 (2) ◽  
pp. 143-150 ◽  
Author(s):  
T Kifune ◽  
J Wdowczyk ◽  
A W Wolfendale
2020 ◽  
pp. 655-710
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Astroparticle physics deals with the investigation of cosmic radiation using similar detection methods as in particle physics, however, mostly with quite different detector arrangements. In this chapter the detection principles for the different radiation types with cosmic origin are presented, this includes charged particles, gamma radiation, neutrinos and possibly existing Dark Matter. In the case of neutrinos also experiments at accelerators and reactors are included. Examples, which are typical for the different areas, are given for detectors and their properties. For cosmic ray detection apparatuses are deployed above the atmosphere with balloons or satellites or on the ground using the atmosphere as calorimeter in which high-energy cosmic rays develop showers or in underground areas including in water and ice.


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


1968 ◽  
Vol 46 (10) ◽  
pp. S569-S571 ◽  
Author(s):  
F. W. O'Dell ◽  
M. M. Shapiro ◽  
R. Silberberg ◽  
B. Stiller ◽  
C. H. Tsao ◽  
...  

An oriented nuclear-emulsion detector capable of time resolution was exposed in Gemini Flight XI to investigate the primary cosmic-ray nuclei above the earth's atmosphere. This was the first satellite exposure of an emulsion apparatus designed to collect 103 high-quality tracks of heavy nuclei under a negligible thickness of matter (0.07 g/cm2). Time resolution was obtained by moving a lower stack, consisting of emulsions of various sensitivities, with respect to a shallower, sensitive upper stack at the rate of 25 microns/minute. It was thus possible to separate the "useful" tracks–formed during the oriented portion of the flight–from those formed at other times. Preliminary data are presented on the relative abundances of individual chemical elements in the high-energy cosmic radiation above the earth's atmosphere. These measurements are compared to published results obtained on balloon flights at similar latitudes. When sufficient data become available in a later phase of this experiment, particular attention will be directed towards the Be and B abundances, the N and F content relative to C and O, and the relative number of iron-group nuclei compared to the lighter ones.


2019 ◽  
Vol 208 ◽  
pp. 14002
Author(s):  
Z. Cao ◽  
L.L. Ma ◽  
S.S. Zhang ◽  
C. Wang ◽  
L.Q. Yin ◽  
...  

Measuring the knees of the cosmic ray spectra for individual species is a very important approach to solve the problem of the origin of ultra high energy galactic cosmic rays. The knee of the iron spectrum is implied to be above 10 PeV from previous experiments, such as ARGO-YBJ and LHAASO-WFCTA. LHAASO is a suitable size for measurements with the required precision. The key is to separate iron nuclei from all cosmic ray samples. In this paper, we identify a couple of variables that are sensitive to the composition of showers recorded by the detector arrays in LHAASO. A multi variate analysis is proposed for the separation. The efficiency and purity of the selection for demanded species are optimized by well configuring the LHAASO array using the LHAASO simulation tools.


2009 ◽  
Vol 18 (10) ◽  
pp. 1577-1581 ◽  
Author(s):  
P. L. BIERMANN ◽  
J. K. BECKER ◽  
L. CARAMETE ◽  
L. GERGELY ◽  
I. C. MARIŞ ◽  
...  

Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.


Author(s):  
R. Battiston ◽  
B. Bertucci ◽  
O. Adriani ◽  
G. Ambrosi ◽  
B. Baoudoy ◽  
...  

AbstractMultimessenger astrophysics is based on the detection, with the highest possible accuracy, of the cosmic radiation. During the last 20 years, the advent space-borne magnetic spectrometers in space (AMS-01, Pamela, AMS-02), able to measure the charged cosmic radiation separating matter from antimatter, and to provide accurate measurement of the rarest components of Cosmic Rays (CRs) to the highest possible energies, have become possible, together with the ultra-precise measurement of ordinary CRs. These developments started the era of precision Cosmic Ray physics providing access to a rich program of high-energy astrophysics addressing fundamental questions like matter-antimatter asymmetry, indirect detection for Dark Matter and the detailed study of origin, acceleration and propagation of CRs and their interactions with the interstellar medium.In this paper we address the above-mentioned scientific questions, in the context of a second generation, large acceptance, superconducting magnetic spectrometer proposed as mission in the context of the European Space Agency’s Voyage2050 long-term plan: the Antimatter Large Acceptance Detector In Orbit (ALADInO) would extend by about two orders of magnitude in energy and flux sensitivity the separation between charged particles/anti-particles, making it uniquely suited for addressing and potentially solving some of the most puzzling issues of modern cosmology.


It has been established that the soft component of the cosmic radiation consists of electrons and photons. Much experimental data on the electrons forming the soft component are available and they are known to form a fraction of about 25-30% of the whole beam of ionizing particles at sea level, excluding particles below 10 7 eV (e.g. Rossi 1933; Nielsen and Morgan 1938). The energy spectrum of the electrons is known roughly from the work of Blackett (1938), Wilson (1939) and others. The energy loss of electrons in metal plates has been investigated by Anderson and Neddermeyer (1934), Blackett and Wilson (1937), Williams (1939), Wilson (1938, 1939), showing that the experimental values of the energy loss are in agreement with the prediction of the quantum theory (Bethe and Heitler 1934). Much less is known about the photon component of cosmic radiation, as comparatively few experiments have been carried out to investigate their properties. Further the results of the investigations available are partly contradictory. The theory of the absorption of high energy photons has been worked out to the same extent as for electrons (Bethe and Heitler). Owing to the lack of experimental material, the theory could be tested only up to energies of about five million volts (McMillan 1934; Gentner 1935). The success of the theory of cascade showers due to Bhabha and Heitler (1937) and Carlson and Oppenheimer (1937), based on the Bethe-Heitler theory of electrons and photons, provides however an indirect test for the validity of the absorption formula for high energy photons. The lack of experimental data on high energy photons is due to the difficulties in the method of observation; photons unlike electrons cannot be observed directly. In the present paper a simple method for investigating cosmic-ray photons is described. Using this method, data about the number, energy distribution and absorption of cosmic-ray photons have been obtained.


1987 ◽  
Vol 125 ◽  
pp. 554-554
Author(s):  
Shigeki Miyaji

Cosmic ray spectrum has an intensity enhancement at energy range 1014–16 eV/nuc. Recently Takahasi et al. (1986) called an attention to chemical composition there. Although the data still contain large uncertainties, they argued an overabundance of calcium at high energies (Ca/Fe ≥ 2 above 1014 eV/nucleus) and some enhancements of medium heavy nuclei (C ∼ Ar) instead of no anomalous p, He, and Fe abundances.


1981 ◽  
Vol 94 ◽  
pp. 91-92 ◽  
Author(s):  
W. R. Binns ◽  
R. Fickle ◽  
T. L. Garrard ◽  
M. H. Israel ◽  
J. Klarmann ◽  
...  

The third High Energy Astronomical Observatory, HEAO-3 was launched on the 20th Sept., 1979 into a 496 km, 43.6° orbit, and has since been successfully returning data from all three experiments on board. One of these experiments, that intended to study the heavy and ultra heavy nuclei in the cosmic radiation, is described here.


1968 ◽  
Vol 46 (10) ◽  
pp. S583-S587 ◽  
Author(s):  
O. Mathiesen ◽  
C. E. Long ◽  
P. S. Freier ◽  
C. J. Waddington

A fully digitized, semiautomated photodensitometer has been employed to study the detailed charge composition of primary cosmic-ray nuclei having [Formula: see text] detected in a stack of nuclear emulsions flown from Hyderabad, India under approximately 4 g/cm2 of residual atmosphere. One hundred and twenty nuclei heavier than phosphorus have been analyzed. These nuclei all had energies exceeding 7.1 GeV per nucleon and have had their charges measured with an accuracy estimated to be ± 0.4 of a unit charge. It has consequently been possible to resolve the individual charges and to determine the elemental abundances. The observed charge distribution has been corrected to the top of the atmosphere and compared with various cosmological abundance compilations. After deriving values for the fragmentation parameters in hydrogen, it is concluded that the data are consistent with the charge distribution predicted if an initially pure sample of iron nuclei had traversed some 4 g/cm2 of matter since the initial acceleration. The cosmologically abundant elements sulphur, argon, and calcium appear to be relatively absent from the source, while nickel is only present with the predicted abundance.


Sign in / Sign up

Export Citation Format

Share Document