scholarly journals ACTIVE GALACTIC NUCLEI: SOURCES FOR ULTRA HIGH ENERGY COSMIC RAYS

2009 ◽  
Vol 18 (10) ◽  
pp. 1577-1581 ◽  
Author(s):  
P. L. BIERMANN ◽  
J. K. BECKER ◽  
L. CARAMETE ◽  
L. GERGELY ◽  
I. C. MARIŞ ◽  
...  

Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

2011 ◽  
Vol 7 (S279) ◽  
pp. 389-390
Author(s):  
Sanshiro Shibata ◽  
Nozomu Tominaga

AbstractUltra-high energy cosmic rays (UHECRs) are the most energetic particles flying from space and their source is not clarified yet. Recently, the Pierre Auger Observatory (PAO) suggests that UHECRs involve heavy nuclei. The PAO results require that a considerable fraction of metal nuclei must exist in the accelerating site, which can be realized only in the stellar interior. This puts strong constraints on the origin of UHECRs. In order to definitize the constraints from PAO results, we investigate the fraction of metal nuclei in a relativistic jet in gamma-ray burst associated with core-collapse supernova. If the jet is initially dominated by radiation field, quasi-statistical equilibrium (QSE) is established and heavy nuclei are dissociated to light particles such as 4He during the acceleration and expansion. On the other hand, if the jet is mainly accelerated by magnetic field heavy or intermediate mass nuclei can survive. The criterion to contain the metal nuclei is that the temperature at the launch site is below 4.5 × 109K. Therefore, if the composition of UHECRs is dominated by metal nuclei, a GRB with the magnetized jet is the most plausible candidate of the accelerating site.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


2005 ◽  
Vol 20 (06) ◽  
pp. 419-440 ◽  
Author(s):  
HOURI ZIAEEPOUR

In a previous work1 we have studied the propagation of relativistic particles in the bulk for some of the most popular brane models. Constraints have been put on the parameter space of these models by calculating the time delay due to propagation in the bulk of particles created during the interaction of Ultra High Energy Cosmic Rays (UHECRs) with protons in the terrestrial atmosphere. The question was, however, raised that probability of hard processes in which bulk modes can be produced is small and consequently, the tiny flux of UHECRs cannot constrain brane models. Here we use Color Glass Condensate (CGC) model to show that effects of extra dimensions are visible not only in hard processes when the incoming photon/parton hits a massive Kaluza–Klein mode but also through the modification of soft/semi-hard parton distribution. At classical level, for an observer in the CM frame of UHECR and atmospheric hadrons, color charge sources are contracted to a thin sheet with a width inversely proportional to the energy of the ultra energetic cosmic ray hadron and consequently they can see an extra dimension with comparable size. Due to QCD interaction, a short life swarm of partons is produced in front of the sheet and its partons can penetrate to the extra-dimension bulk. This reduces the effective density of partons on the brane or in a classical view creates a delay in the arrival of the most energetic particles if they are reflected back due to the warping of the bulk. In CGC approximation the density of swarm at different distances from the classical sheet can be related and therefore it is possible (at least formally) to determine the relative fraction of partons in the bulk and on the brane at different scales. Results of this work are also relevant to the test of brane models in hadron colliders like LHC.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


2021 ◽  
Author(s):  
Jon Paul Lundquist ◽  
Lukas Merten ◽  
Serguei Vorobiov ◽  
Margot Boughelilba ◽  
Anita Reimer ◽  
...  

1994 ◽  
Vol 142 ◽  
pp. 926-936
Author(s):  
Reinhard Schlickeiser

AbstractWe review the transport and acceleration of cosmic rays concentrating on the origin of galactic cosmic rays. Quasi-linear theory for the acceleration rates and propagation parameters of charged test particles combined with the plasma wave viewpoint of modeling weak cosmic electromagnetic turbulence provides a qualitatively and quantitatively correct description of key observations. Incorporating finite frequency effects, dispersion, and damping of the plasma waves are essential in overcoming classical discrepancies with observations as the Kfit - Kql discrepancy of solar particle events. We show that the diffusion-convection transport equation in its general form contains spatial convection and diffusion terms as well as momentum convection and diffusion terms. In particular, the latter momentum diffusion term plays a decisive role in the acceleration of cosmic rays at super-Alfvénic supernova shock fronts, and in the acceleration of ultra-high-energy cosmic rays by distributed acceleration in our own galaxy.Subject headings: acceleration of particles — convection — cosmic rays — diffusion — shock waves


Sign in / Sign up

Export Citation Format

Share Document