The effect of the Mn constituent on the electronic structures of Al70Pd22.5(Re1−xMnx)7.5quasicrystals studied by x-ray absorption and photoemission spectroscopy

2005 ◽  
Vol 18 (1) ◽  
pp. 265-273
Author(s):  
C W Pao ◽  
H M Tsai ◽  
J W Chiou ◽  
W F Pong ◽  
M-H Tsai ◽  
...  
Author(s):  
Kaname Kanai ◽  
Takuya Inoue ◽  
Takaya Furuichi ◽  
Kaito Shinoda ◽  
Takashi Iwahashi ◽  
...  

A series of n-cycloparaphenylenes ([n]CPP) were studied by ultraviolet photoemission, inverse photoemission, ultraviolet-visible absorption, and X-ray photoemission spectroscopy to detect their unique electronic structures. [n]CPP has a cyclic structure in...


2003 ◽  
Vol 107 (46) ◽  
pp. 12562-12565 ◽  
Author(s):  
Shuji Matsuo ◽  
Ponnusamy Nachimuthu ◽  
Dennis W. Lindle ◽  
Hisanobu Wakita ◽  
Rupert C. C. Perera

1998 ◽  
Vol 4 (S2) ◽  
pp. 154-155
Author(s):  
H. Ade

In Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy, excitations of core electrons into unoccupied molecular orbitals or electronic states provide sensitivity to a wide variety of chemical functionalities in molecules and solids. This sensitivity complements infrared (IR) spectroscopy, although the NEXAFS spectra are not quite as specific and “rich” as IR spectra. The sensitivity of NEXAFS to distinguish chemical bonds and electronic structures covers a wide variety of samples: from metals to inorganics and organics. (There is a tendency in the community to use the term NEXAFS for soft x-ray spectroscopy of organic materials, while for inorganic materials or at higher energies X-ray Absorption Near Edge Spectroscopy (XANES) is utilized, even though the fundamental physics is the same.) The sensitivity of NEXAFS is particularly high to distinguish saturated from unsaturated bonds. NEXAFS can also detect conjugation in a molecule, as well as chemical shifts due to heteroatoms.


Sign in / Sign up

Export Citation Format

Share Document