An efficient and low-cost computer-controlled programmable duty cycle light-emitting diode pulse generator

2005 ◽  
Vol 16 (4) ◽  
pp. N11-N17 ◽  
Author(s):  
A S Kavasoğlu ◽  
A O Kodolbaş ◽  
Ö Öktü
2013 ◽  
Vol 17 (05) ◽  
pp. 351-358 ◽  
Author(s):  
Mohammad Janghouri ◽  
Ezeddin Mohajerani ◽  
Mostafa M. Amini ◽  
Naser Safari

A method for obtaining red emission from an organic-light emitting diode has been developed by dissolving red and yellow dyes in a common solvent and thermally evaporating the mixture in a single furnace. Dichlorido-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex ( Q2SnCl2 , Q = 5,7-dichloro-8-hydroxyquinoline) has been synthesized for using as a fluorescent material in organic light-emitting diodes (OLEDs). The electronic states HOMO (Highest Occupied Molecular Orbital)/LUMO (Lowest Occupied Molecular Orbital) energy levels explored by means of cyclic voltammetry measurements. A device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/ Q2SnCl2/Al (180nm) was fabricated and its electroluminescence performance at various thicknesses of light emitting layer (LEL) of Q2SnCl2 is reported. By following this step, an optimal thickness for the doping effect was also identified and explained. Finally a device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/meso-tetraphenylporphyrin (TPP): Q2SnCl2 (75nm)/ Al (180nm) was fabricated and its electroluminescence performance at various concentrations of dye has been investigated. It is shown that this new method is promising candidate for fabrication of low cost OLEDs at more homogeneous layer.


Author(s):  
Pamela Martinez-Vega ◽  
Araceli Lopez-Badillo ◽  
J. Luis Luviano-Ortiz ◽  
Abel Hernandez-Guerrero ◽  
Jaime G. Cervantes

Abstract The modern world progressively demands more energy; according to forecasts energy consumption will grow at an average annual rate of 3 percent. Therefore, it is necessary to purchase products or devices that are efficient and environmentally friendly. Technology in LED (Light Emitting Diode) lighting is presented as an alternative to energy saving, since LEDs have proven to be extremely efficient, have a long service life and their cost-effective ratio is very good. However, the heat emitted by the LED chip must be dissipated effectively, since the overheating of the chip reduces the efficiency and lifetime of the lamp. Therefore, heat sinks that are reliable, efficient and inexpensive should be designed and built. The present work proposes new designs for heat sinks in LED lamps, some of the models in the design of the fins refer to the Fibonacci series. The models proposed in the present work that have a significant advantage are the Type 1E Model (5.2% mass savings and better thermal efficiency of 8.33%), GR Type 1 Model (3.12% lighter and 3.33% more efficient) and the GRL Type Model (4. 51% mass savings and 5.55% thermally more efficient) compared to the Type 2 Reference Model proposed by Jang et al. [12].


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e62903 ◽  
Author(s):  
Miki Yamaoka ◽  
Shun-suke Asami ◽  
Nayuta Funaki ◽  
Sho Kimura ◽  
Liao Yingjie ◽  
...  

Author(s):  
Hairong Wang ◽  
Xianni Gao ◽  
Guoliang Sun ◽  
Yulong Zhao ◽  
Zhuangde Jiang

In order to detect methane (CH4) accurately and reliably, this paper presents a sensor which consists of infrared diode, fixtures, blazed grating, to realize the extremely narrow-bandwidth light at wavelength of 1.331μm. Based on factors such as compatibility with the transmission characteristics of silica fiber and the cost, a LED (light-emitting diode) with center wavelength of 1.3μm is selected. The LED light is modulated as the parallel light beam. As the light is incident in a micro-blazed grating with certain angle, by diffraction and interference, the light will output the maximum light intensity of its diffraction order at 1.331 μm, which just is an absorption peak of CH4. Micro-blazed grating applied here is low cost and easy replication by various ways, which makes extreme narrow width wavelength possible. Simulation and analysis indicate the designed prototype can output 1.331μm with bandwidth from 1.32907μm to 1.332495μm. With the light source basing on light dividing system, more reliable and higher sensitive measurement of the dangerous gases such as methane and carbon monoxide (CO) can be realized.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4861 ◽  
Author(s):  
Sumit Agrawal ◽  
Christopher Fadden ◽  
Ajay Dangi ◽  
Xinyi Yang ◽  
Hussain Albahrani ◽  
...  

Photoacoustic computed tomography (PACT) has been widely explored for non-ionizing functional and molecular imaging of humans and small animals. In order for light to penetrate deep inside tissue, a bulky and high-cost tunable laser is typically used. Light-emitting diodes (LEDs) have recently emerged as cost-effective and portable alternative illumination sources for photoacoustic imaging. In this study, we have developed a portable, low-cost, five-dimensional (x, y, z, t, λ ) PACT system using multi-wavelength LED excitation to enable similar functional and molecular imaging capabilities as standard tunable lasers. Four LED arrays and a linear ultrasound transducer detector array are housed in a hollow cylindrical geometry that rotates 360 degrees to allow multiple projections through the subject of interest placed inside the cylinder. The structural, functional, and molecular imaging capabilities of the LED–PACT system are validated using various tissue-mimicking phantom studies. The axial, lateral, and elevational resolutions of the system at 2.3 cm depth are estimated as 0.12 mm, 0.3 mm, and 2.1 mm, respectively. Spectrally unmixed photoacoustic contrasts from tubes filled with oxy- and deoxy-hemoglobin, indocyanine green, methylene blue, and melanin molecules demonstrate the multispectral molecular imaging capabilities of the system. Human-finger-mimicking phantoms made of a bone and blood tubes show structural and functional oxygen saturation imaging capabilities. Together, these results demonstrate the potential of the proposed LED-based, low-cost, portable PACT system for pre-clinical and clinical applications.


2008 ◽  
Vol 47 (4) ◽  
pp. 3236-3239 ◽  
Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Yuan-Tai Tseng ◽  
Fan-Gang Tseng ◽  
Heng-Sheng Huang ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Arzu Cosgun ◽  
Renli Fu ◽  
Weina Jiang ◽  
Jianhai Li ◽  
Jizhong Song ◽  
...  

Integration of blue light-emitting diode (LED) chips with yellow phosphors has been the most practical way to achieve white lighting, but finding a low-cost alternative for Y3Al5O12:Ce3+ (YAG:Ce) phosphors, which are expensive and lack red emission, is still a great challenge.


Sign in / Sign up

Export Citation Format

Share Document