Using oxygen-quenched pressure-sensitive paint for oxygen concentration measurements in low-temperature combustion environments

2008 ◽  
Vol 19 (8) ◽  
pp. 085307 ◽  
Author(s):  
Gustaf Särner ◽  
Ulf Göransson ◽  
Johannes Lindén ◽  
Mattias Richter ◽  
Marcus Aldén
2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Sunyoup Lee ◽  
Seungmook Oh ◽  
Junghwan Kim ◽  
Duksang Kim

The present study investigated the effects of biodiesel blending under a wide range of intake oxygen concentration levels in a diesel engine. This study attempted to identify the lowest biodiesel blending rate that achieves acceptable levels of nitric oxides (NOx), soot, and coefficient of variation in the indicated mean effective pressure (COVIMEP). Biodiesel blending was to be minimized in order to reduce the fuel penalty associated with the biodiesels lower caloric value (LCV). Engine experiments were performed in a 1 l single-cylinder diesel engine at an engine speed of 1400 rev/min under a medium load condition. The blend rate and intake oxygen concentration were varied independently of each other at a constant intake pressure of 200 kPa. The biodiesel blend rate varied from 0% (B000) to 100% biodiesel (B100) at a 20% increment. The intake oxygen level was adjusted from 8% to 19% by volume (vol. %) in order to embrace both conventional and low-temperature combustion (LTC) operations. A fixed injection duration of 788 ms at a fuel rail pressure of 160 MPa exhibited a gross indicated mean effective pressure (IMEP) between 750 kPa and 910 kPa, depending on the intake oxygen concentration. The experimental results indicated that the intake oxygen level had to be below 10 vol. % to achieve the indicated specific NOx (ISNOx) below 0.2 g/kW h with the B000 fuel. However, a substantial soot increase was exhibited at such a low intake oxygen level. Biodiesel blending reduced NOx until the blending rate reached 60% with reduced in-cylinder temperature due to lower total energy release. As a result, 60% biodiesel-blended diesel (B060) achieved NOx, soot, and COVIMEP of 0.2 g/kW h, 0.37 filter smoke number (FSN), and 0.5, respectively, at an intake oxygen concentration of 14 vol. %. The corresponding indicated thermal efficiency was 43.2%.


Author(s):  
Sunyoup Lee ◽  
Seungmook Oh ◽  
Junghwan Kim ◽  
Duksang Kim

The present study investigated the effects of biodiesel blending under a wide range of intake oxygen concentration levels in a diesel engine. This study attempted to identify the lowest biodiesel blending rate that achieves acceptable levels of nitric oxides (NOx), soot, and coefficient of variation in the indicated mean effective pressure (COVIMEP). Biodiesel blending was to be minimized in order to reduce the fuel penalty associated with the biodiesels lower caloric value. Engine experiments were performed in a 1-liter single-cylinder diesel engine at an engine speed of 1400 rev/min under a medium load condition. The blend rate and intake oxygen concentration were varied independently of each other at a constant intake pressure of 200 kPa. The biodiesel blend rate varied from 0% (B000) to 100% biodiesel (B100) at a 20% increment. The intake oxygen level was adjusted from 8 to 19% by volume (vol %) in order to embrace both conventional and low-temperature combustion (LTC) operations. A fixed injection duration of 788 μs at a fuel rail pressure of 160 MPa exhibited a gross indicated mean effective pressure (IMEP) between 750 kPa and 910 kPa, depending on the intake oxygen concentration. The experimental results indicated that the intake oxygen level had to be below 10 vol% to achieve the indicated specific NOx (ISNOx) below 0.2g/kWhr with the B000 fuel. However, a substantial soot increase was exhibited at such a low intake oxygen level. Biodiesel blending reduced NOx until the blending rate reached 60% with reduced in-cylinder temperature due to lower total energy release. As a result, 60%-biodiesel blended diesel (B060) achieved NOx, soot, and COVIMEP of 0.2 g/kWhr, 0.37 filter smoke number (FSN), and 0.5, respectively, at an intake oxygen concentration of 14 vol%. The corresponding indicated thermal efficiency was 43.2%.


Author(s):  
Stephen M. Walton ◽  
Carlos Perez ◽  
Margaret S. Wooldridge

Ignition studies of two small esters were performed using a rapid compression facility (RCF). The esters (methyl butanoate and butyl methanoate) were chosen to have matching molecular weights, and C:H:O ratios, while varying the lengths of the constituent alkyl chains. The effect of functional group size on ignition delay time was investigated using pressure time-histories and high speed digital imaging. The mixtures studied covered a range of conditions relevant to oxygenated fuels and fuel additives, including bio-derived fuels. Low temperature and moderate pressure conditions were selected for study due to their relevance to advanced low temperature combustion strategies, and internal combustion engine conditions. The results are discussed in terms of the reaction pathways affecting the ignition properties.


Author(s):  
Yilu Lin ◽  
Han Wu ◽  
Karthik Nithyanandan ◽  
Timothy H. Lee ◽  
Chia-fon F. Lee ◽  
...  

Bio-butanol, a promising alternative transportation fuel, has its industrial-scale production hindered significantly by high cost component purification process from acetone-butanol-ethanol (ABE) broth. The purpose of this study is to investigate the possibility of using ABE-Diesel blends with high ABE percentages as an alternative transportation fuel. An optical-accessible constant volume chamber capable of controlling ambient temperature, pressure and oxygen concentration was used to mimic the environmental conditions inside a real diesel engine cylinder. ABE fuel with typical volumetric ratios of 30% acetone, 60% butanol and 10% ethanol were blended with ultra-low sulfur diesel at 80% vol. and were tested in this study. The ambient temperature was set to be at 1100K and 900K, which represents normal combustion conditions and low temperature combustion conditions respectively. The ambient oxygen concentrations were set to be at 21%, 16% and 11%, representing different EGR ratios. The in-cylinder pressure was recorded by using a pressure transducer and the time-resolved Mie-scattering image and natural flame luminosity was captured using a high-speed camera coupled with a copper vapor laser. The results show that the liquid penetration is reduced by the high percentage of ABE in the blends. At the same time, the soot formation is reduced significantly by increasing oxygen content in the ABE fuel. Even more interesting, a soot-free combustion was achieved by combining the low temperature combustion with the higher percentage ABE case. In terms of soot emission, high ABE ratio blends are a very promising alternative fuel to be directly used in diesel engines especially under low-temperature combustion conditions.


Sign in / Sign up

Export Citation Format

Share Document