Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

2009 ◽  
Vol 19 (2) ◽  
pp. 025023 ◽  
Author(s):  
Julien Giboz ◽  
Thierry Copponnex ◽  
Patrice Mélé
2011 ◽  
Vol 46 (24) ◽  
pp. 7830-7838 ◽  
Author(s):  
Xianhu Liu ◽  
Guoqiang Zheng ◽  
Kun Dai ◽  
Zhenhua Jia ◽  
Songwei Li ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 92905-92917 ◽  
Author(s):  
Weiwei Ding ◽  
Yinghong Chen ◽  
Zhuo Liu ◽  
Sen Yang

During microinjection molding, there are highly oriented PCL nanofibrils in situ formed, while during conventional injection molding, there are oriented microfibrils in situ formed.


2012 ◽  
Vol 468-471 ◽  
pp. 1013-1016 ◽  
Author(s):  
Hua Qing Lai

Molding is one of the most versatile and important processes for manufacturing complex plastic parts. It is a method of fabricating plastic parts by utilizing a mold or cavity that has a shape and size similar to the part being produced. Molten polymer is injected into the cavity, resulting in the desired part upon solidification. The injection-molded parts typically have excellent dimensional tolerance and require almost no finishing and assembly operations. But new variations and emerging innovations of conventional injection molding have been continuously developed to offer special features and benefits that cannot be accomplished by the conventional injection molding process. This study aims to improving the life of stereolithography injection mold.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4087
Author(s):  
Jiquan Li ◽  
Wenyong Liu ◽  
Xinxin Xia ◽  
Hangchao Zhou ◽  
Liting Jing ◽  
...  

A burn mark is a sort of serious surface defect on injection-molded parts. In some cases, it can be difficult to reduce the burn marks by traditional methods. In this study, external gas-assisted injection molding (EGAIM) was introduced to reduce the burn marks, as EGAIM has been reported to reduce the holding pressure. The parts with different severities of burn marks were produced by EGAIM and conventional injection molding (CIM) with the same molding parameters but different gas parameters. The burn marks were quantified by an image processing method and the quantitative method was introduced to discuss the influence of the gas parameters on burn marks. The results show that the burn marks can be eliminated by EGAIM without changing the structure of the part or the mold, and the severity of the burn marks changed from 4.98% with CIM to 0% with EGAIM. Additionally, the gas delay time is the most important gas parameter affecting the burn marks.


2016 ◽  
Vol 13 (10) ◽  
pp. 7125-7136
Author(s):  
Bei Su ◽  
Ying-Guo Zhou ◽  
Lih-Sheng Turng

Compared with the constant mold temperature in conventional injection molding (CIM), injection molded parts with variable mold temperatures undergo a different thermomechanical history. As a result, the microstructure—for example, the skin–core structure found often in CIM—can be changed. However, unlike conventional injection molding, there have been few studies on the microstructure of injection molding with variable mold temperatures (IMVMT), possibly because the experimental control of variable mold temperatures remains difficult. In this paper, the skin layer thickness of CIM and IMVMT under different mold temperatures was carefully investigated by optical microscope. The higher mold temperatures and longer holding times during the injection flow stage caused a thinning of the highly oriented skin layer, and vice-versa. A dual-scale modeling was then proposed based on the prediction of crystal dimensions, and it was further used to predict the thickness of the skin layer. The predicted results were in agreement with the experimental observations under the different mold temperatures during IMVMT processing, and the proposed model proved to be effective.


Sign in / Sign up

Export Citation Format

Share Document