Optimal design of a shear magnetorheological damper for turning vibration suppression

2013 ◽  
Vol 22 (9) ◽  
pp. 095012 ◽  
Author(s):  
Y Zhou ◽  
Y L Zhang
2018 ◽  
Vol 29 (18) ◽  
pp. 3648-3655 ◽  
Author(s):  
Mohammad Mehdi Naserimojarad ◽  
Mehrdad Moallem ◽  
Siamak Arzanpour

Magnetorheological dampers have been used in automotive industry and civil engineering applications for shock and vibration control for some time. While such devices are known to provide reliable shock and vibration suppression, there exist emerging applications in which the magnetorheological dampers have to be optimized in terms of power consumption and overall weight (e.g. energy-efficient electric vehicles). Utilizing traditional optimal design approaches to tackle those issues can sometimes lead to convergence problems such as getting trapped in a local extremum and failing to converge to the global optimum. Furthermore, manufacturing limitations are usually not taken into account in the optimization process which may hamper achieving an optimal design. In this article, we present a method for optimal design of magnetorheological dampers by utilizing mathematical optimization and finite element analysis. The proposed method avoids infeasible solutions by considering physical constraints such as fabrication limitations and tolerances. This approach takes every single feasible solution into account so that the final solution would be the global extremum of the optimization cost function. The proposed approach is applied to optimize a complex magnetorheological damper structure with different types of materials such as steel and AlNiCo. In particular, we present the design of a valve-mode magnetorheological damper with AlNiCo integrated as its core. A magnetorheological damper prototype is manufactured based on the proposed optimization method and tested experimentally.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Yukio Ishida ◽  
Masaki Sumi

An electromagnetic actuator has the property to convert mechanical energy to electrical energy and vice versa. In this study, an electromagnetic resonant shunt damper, consisting of a voice coil motor with an electric resonant shunt circuit, is proposed. The optimal design of the shunt circuit is obtained theoretically for this electromagnetic resonant shunt damper. Furthermore, the effects of parameter errors of the elements of the electromagnetic resonant shunt damper are also investigated. The applicability of the theoretical findings for the proposed damper is justified by the experimental analysis.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Jiqiang Wang

Abstract Energy harvesting vibration absorbers (EHVAs) represent a novel type of vibration absorbers where the dissipated energy is harnessed in the absorber system. Conventional optimization-based methods can be utilized for optimal design of EHVAs, but this usually involves in iterative design procedures, particularly for approaching performance limits. In this note, a visualization technique is proposed. The problem of existence and uniqueness solutions is addressed; the intimate relationship between energy harvesting and vibration suppression performances is disclosed; and the fundamental issue of determining performance limit with this visualized method is solved. These features form solid contributions of the current proposal over those optimization-based design methods. The corresponding design procedures are illustrated and the claims are further validated through real-time simulations to the optimal design of EHVAs.


2020 ◽  
Vol 24 (3) ◽  
pp. 867-878 ◽  
Author(s):  
Bahman Farahmand Azar ◽  
Hedayat Veladi ◽  
Siamak Talatahari ◽  
Farzad Raeesi

Author(s):  
QH Nguyen ◽  
SB Choi ◽  
JK Woo

In this research, a magnetorheological fluid-based damper to attenuate vibration due to unbalanced laundry mass from a front-loaded washing machine is proposed and optimally designed with experimental validation. First, rigid vibration mode of the washing machine due to an unbalanced mass is analyzed, and an optimal positioning of the suppression system for the washing machine is figured out. In order to attenuate vibration from the washing machine, several configurations of magnetorheological damper are proposed considering available space and the required damping force of the system. Based on the Bingham rheological model of magnetorheological fluid, damping force of the proposed magnetorheological dampers is then derived. An optimal design problem for the proposed magnetorheological damper is constructed considering its zero-field friction force and the maximum damping force. The optimization objective is to minimize the zero-field friction force of the magnetorheological damper while the maximum value of damping force is kept being greater than a required value. An optimization procedure based on finite element analysis integrated with an optimization tool is employed to obtain optimal geometric dimensions of the magnetorheological dampers featuring different types of magnetorheological fluid. Optimal solutions of the magnetorheological dampers are then presented and the optimized damper is figured out. In addition, performance characteristics of the optimized magnetorheological damper are presented and discussed.


2009 ◽  
Vol 147-149 ◽  
pp. 696-701
Author(s):  
Maciej Rosół

The paper is devoted to an investigation of a Radio Frequency (RF) measuring-control system equipped with sensors and actuators distributed along the cable. Displacement, acceleration and strain sensors together with an actuator and PWM type control signals can be used. This system is configured to operate with the experimental setup specially developed to study MR damper performance for vibration suppression of cables. The RF measuring-control system structure, transmission protocol and radio disturbances problem are discussed. The experimental results for the cable laboratory system are presented.


Sign in / Sign up

Export Citation Format

Share Document