Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines

Author(s):  
QH Nguyen ◽  
SB Choi ◽  
JK Woo

In this research, a magnetorheological fluid-based damper to attenuate vibration due to unbalanced laundry mass from a front-loaded washing machine is proposed and optimally designed with experimental validation. First, rigid vibration mode of the washing machine due to an unbalanced mass is analyzed, and an optimal positioning of the suppression system for the washing machine is figured out. In order to attenuate vibration from the washing machine, several configurations of magnetorheological damper are proposed considering available space and the required damping force of the system. Based on the Bingham rheological model of magnetorheological fluid, damping force of the proposed magnetorheological dampers is then derived. An optimal design problem for the proposed magnetorheological damper is constructed considering its zero-field friction force and the maximum damping force. The optimization objective is to minimize the zero-field friction force of the magnetorheological damper while the maximum value of damping force is kept being greater than a required value. An optimization procedure based on finite element analysis integrated with an optimization tool is employed to obtain optimal geometric dimensions of the magnetorheological dampers featuring different types of magnetorheological fluid. Optimal solutions of the magnetorheological dampers are then presented and the optimized damper is figured out. In addition, performance characteristics of the optimized magnetorheological damper are presented and discussed.

2018 ◽  
Vol 29 (18) ◽  
pp. 3648-3655 ◽  
Author(s):  
Mohammad Mehdi Naserimojarad ◽  
Mehrdad Moallem ◽  
Siamak Arzanpour

Magnetorheological dampers have been used in automotive industry and civil engineering applications for shock and vibration control for some time. While such devices are known to provide reliable shock and vibration suppression, there exist emerging applications in which the magnetorheological dampers have to be optimized in terms of power consumption and overall weight (e.g. energy-efficient electric vehicles). Utilizing traditional optimal design approaches to tackle those issues can sometimes lead to convergence problems such as getting trapped in a local extremum and failing to converge to the global optimum. Furthermore, manufacturing limitations are usually not taken into account in the optimization process which may hamper achieving an optimal design. In this article, we present a method for optimal design of magnetorheological dampers by utilizing mathematical optimization and finite element analysis. The proposed method avoids infeasible solutions by considering physical constraints such as fabrication limitations and tolerances. This approach takes every single feasible solution into account so that the final solution would be the global extremum of the optimization cost function. The proposed approach is applied to optimize a complex magnetorheological damper structure with different types of materials such as steel and AlNiCo. In particular, we present the design of a valve-mode magnetorheological damper with AlNiCo integrated as its core. A magnetorheological damper prototype is manufactured based on the proposed optimization method and tested experimentally.


2011 ◽  
Vol 52-54 ◽  
pp. 371-377 ◽  
Author(s):  
Quoc Hung Nguyen ◽  
Jun Cheol Jeon ◽  
Seung Bok Choi

This research focuses on developing a new configuration and optimal design of magneto-rheological (MR) brake for a middle-sized motorcycle which can replace conventional drum-type brake. The proposed MR brake mechanism utilizes a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force. In the optimization, the required braking torque, the temperature due to zero field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After a brief introduction of the proposed MR brake configuration, the braking torque is derived based on Herschel-Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed. An optimization procedure based on the finite element analysis (FEA) integrated with an optimization tool is used to obtain optimal geometric dimensions of the MR brake. From the results, discussions on the performance improvement of the optimized MR brake are described.


2020 ◽  
Vol 31 (19) ◽  
pp. 2179-2195 ◽  
Author(s):  
Yang Yang ◽  
Zhao-Dong Xu ◽  
Ying-Qing Guo ◽  
Yan-Wei Xu ◽  
Jie Zhang

Magnetorheological damper is a typical semi-active control device. Its output damping force varies with the internal magnetic field, which is a key factor affecting the dynamic performance of the magnetorheological dampers. Existing studies about the magnetic field of magnetorheological dampers are limited to theoretical analysis; thus, this study aims to experimentally explore the complicated magnetic field distribution inside the magnetorheological dampers with multiple coils. First, the magnetic circuit of a three-coil magnetorheological damper was theoretically analyzed and designed, and the finite element model of the three-coil magnetorheological damper was set up to calculate the magnetic induction intensities of the damping gaps in different currents and numbers of coil turns. A three-coil magnetorheological damper embedded with a Hall sensor was then manufactured based on the theoretical and finite element analysis, and internal magnetic field tests under different conditions were carried out to obtain the actual magnetic induction intensities. At last, the magnetic field coupling model of the three-coil magnetorheological damper was proposed by introducing a coupling coefficient to describe the complex magnetic field distribution due to the strong coupling effect of the three coils, and the results calculated by the proposed model agreed well with the finite element analysis and magnetic field test data. The proposed model lays a foundation for the optimal design of the magnetic circuit and the mathematical model of multi-coil magnetorheological dampers.


2019 ◽  
Vol 30 (5) ◽  
pp. 764-777 ◽  
Author(s):  
Song-lin Nie ◽  
De-kui Xin ◽  
Hui Ji ◽  
Fang-long Yin

This article presents the design and multi-physics coupling analysis of a shear-valve-mode magnetorheological fluid damper with different piston configurations. The finite element model is built to study the effects of the shape of the piston slot and magnetism-insulators at both ends of the piston yoke on the performance of the magnetorheological damper. Particle swarm optimization and finite element simulation are combined to optimize the structural parameters of the magnetorheological damper. The influences of different piston configurations on the magnetic flux density in the working gap, the shear stress, the viscous stress, and the dynamic range are investigated. The simulation results reveal that the magnetorheological damper, in which the corners of the piston slot are chamfered and the edges of the magnetism-insulators are filleted, exhibits a better damping performance. Furthermore, magnetorheological dampers with and without magnetism-insulators are fabricated. The influences of control current, displacement, and velocity on the mechanical performance of the magnetorheological dampers are experimentally investigated, and the experiment results are in accordance with the theoretical derivation and finite element simulation results.


2013 ◽  
Vol 336-338 ◽  
pp. 953-959 ◽  
Author(s):  
Quoc Hung Nguyen ◽  
Do Xuan Phu ◽  
Joon Hee Park ◽  
Seung Bok Choi ◽  
Ok Hyun Kang

In this paper, novel configurations of a compact and high damping force engine mount featuring magnetorheological fluid (MRF) is proposed and analyzed. In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. Firstly, several configurations of the MR mount are proposed. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are then derived based on Bingham plastic behaviour of the MRF. Optimal design of the proposed MR mount is then considered. In the optimization, the objective is to find out the optimal structure of the MR mount that can generate a maximum damping force while the off-state force of the mount is constrained in such a manner that the force ratio of the mount is greater than a required value. Performance of the optimized MR mount is then evaluated based on finite element analysis and validated by experimental results.


2019 ◽  
Vol 31 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Jong-Seok Oh ◽  
Key-Sun Kim ◽  
Yang-Sup Lee ◽  
Seung-Bok Choi

This study suggests a relationship between two different types of magnetorheological dampers and the driving performance of the passenger vehicles such as ride quality and stability. One of the magnetorheological dampers has the two different bypass holes in the piston bobbin to achieve a relatively low damping force slope in the low piston velocity region. Without bypass holes, two cylindrical-type magnetorheological dampers have same dimensions (pole lengths, piston radius, and coil size). To enhance the ride quality of the passenger vehicle, the damping force slope of the magnetorheological damper with bypass holes is more gradual than that of the magnetorheological damper without bypass holes. On the basis of the damping force model, three vehicle types with two working modes (soft and hard) are formulated. Driving performance indexes, such as vertical acceleration of the sprung mass and tire deflection, are evaluated in frequency domains under two random road conditions. A comparative study is conducted to prove the effectiveness of the magnetorheological damper with bypass holes through simulation.


2012 ◽  
Vol 24 (8) ◽  
pp. 903-907 ◽  
Author(s):  
Douglas Ivers ◽  
Douglas LeRoy

This article will discuss how controllable material technology, such as the use of active magnetorheological dampers, improves primary and secondary suspensions of vehicle. Although relatively new to the marketplace, semiactive suspensions in commercial automobiles and off-highway vehicles have been proven through the use of active magnetorheological dampers since 1998. In fact, magnetorheological suspension dampers are found today on the commercial vehicles of an increasing number of automotive original equipment manufacturers and leading off-highway original equipment manufacturers. Magnetorheological fluid dampers are simple in design and have the advantage of no moving parts. The resistive force from a magnetorheological damper is generated as iron particles, suspended in the magnetorheological fluid, pass through a magnetic field controlled by the electrical current passing through an electric coil contained within a moving piston surrounded by the fluid. By adjusting the current to the damper coil in response to feedback from vehicle sensors and a controller, the damping response of the suspension can be optimized and controlled in real time to provide optimal operator comfort. The magnetorheological damper system has a full-scale step response of less than 10 ms. Sophisticated control algorithms adapt to large changes in payload, enabling the vehicle to meet ride metrics without pneumatic load leveling. Other benefits of the magnetorheological damping system include higher speed in North Atlantic Treaty Organization double-lane change tests, reduced risk of rollover, improved accuracy of mounted weapons, and improved vehicle durability and readiness.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 64
Author(s):  
Liankang Wei ◽  
Hongzhan Lv ◽  
Kehang Yang ◽  
Weiguang Ma ◽  
Junzheng Wang ◽  
...  

Purpose: We aim to provide a systematic methodology for the optimal design of MRD for improved damping capacity and dynamical adjustability in performing its damping function. Methods: A modified Bingham model is employed to model and simulate the MRD considering the MR fluid’s compressibility. The parameters that describe the structure of MRD and the property of the fluid are systematically examined for their contributions to the damping capacity and dynamically adjustability. A response surface method is employed to optimize the damping force and dynamically adjustable coefficient for a more practical setting related to the parameters. Results: The simulation system effectively shows the hysteretic characteristics of MRDs and shows our common sense understanding that the damping gap width and yoke diameter have significant effects on the damping characteristics of MRD. By taking a typical MRD device setup, optimal design shows an increase of the damping force by 33% and an increase of the dynamically adjustable coefficient by 17%. It is also shown that the methodology is applicable to other types of MDR devices. Conclusion: The compressibility of MR fluid is one of the main reasons for the hysteretic characteristics of MRD. The proposed simulation and optimization methods can effectively improve the MRD’s damping performance in the design stage.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3904
Author(s):  
Ji-Chang Son ◽  
Myung-Ki Baek ◽  
Sang-Hun Park ◽  
Dong-Kuk Lim

In this paper, an improved immune algorithm (IIA) was proposed for the torque ripple reduction optimal design of an interior permanent magnet synchronous motor (IPMSM) for a fuel cell electric vehicle (FCEV) traction motor. When designing electric machines, both global and local solutions of optimal designs are required as design result should be compared in various aspects, including torque, torque ripple, and cogging torque. To lessen the computational burden of optimization using finite element analysis, the IIA proposes a method to efficiently adjust the generation of additional samples. The superior performance of the IIA was verified through the comparison of optimization results with conventional optimization methods in three mathematical test functions. The optimal design of an IPMSM using the IIA was conducted to verify the applicability in the design of practical electric machines.


Sign in / Sign up

Export Citation Format

Share Document