scholarly journals Quantum mass and central charge of supersymmetric monopoles: anomalies, current renormalization, and surface terms

2006 ◽  
Vol 2006 (06) ◽  
pp. 056-056 ◽  
Author(s):  
Anton Rebhan ◽  
Peter van Nieuwenhuizen ◽  
Robert Wimmer
Keyword(s):  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Philippe Mathieu ◽  
Nicholas Teh

Abstract Recent years have seen a renewed interest in using ‘edge modes’ to extend the pre-symplectic structure of gauge theory on manifolds with boundaries. Here we further the investigation undertaken in [1] by using the formalism of homotopy pullback and Deligne- Beilinson cohomology to describe an electromagnetic (EM) duality on the boundary of M = B3 × ℝ. Upon breaking a generalized global symmetry, the duality is implemented by a BF-like topological boundary term. We then introduce Wilson line singularities on ∂M and show that these induce the existence of dual edge modes, which we identify as connections over a (−1)-gerbe. We derive the pre-symplectic structure that yields the central charge in [1] and show that the central charge is related to a non-trivial class of the (−1)-gerbe.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Shouvik Datta ◽  
Yunfeng Jiang

Abstract We analyse the $$ T\overline{T} $$ T T ¯ deformation of 2d CFTs in a special double-scaling limit, of large central charge and small deformation parameter. In particular, we derive closed formulae for the deformation of the product of left and right moving CFT characters on the torus. It is shown that the 1/c contribution takes the same form as that of a CFT, but with rescalings of the modular parameter reflecting a state-dependent change of coordinates. We also extend the analysis for more general deformations that involve $$ T\overline{T} $$ T T ¯ , $$ J\overline{T} $$ J T ¯ and $$ T\overline{J} $$ T J ¯ simultaneously. We comment on the implications of our results for holographic proposals of irrelevant deformations.


1999 ◽  
Vol 10 (04) ◽  
pp. 517-529 ◽  
Author(s):  
SYNGE TODO

A singularity on the negative-fugacity axis of the hard-core lattice gas is investigated in terms of numerical diagonalization of large-scale transfer matrices. For the hard-square lattice gas, the location of the singular point [Formula: see text] and the critical exponent ν are accurately determined by the phenomenological renormalization technique as -0.11933888188(1) and 0.416667(1), respectively. It is also found that the central charge c and the dominant scaling dimension xσ are -4.399996(8) and -0.3999996(7), respectively. Similar analyses for other hard-core lattice-gas models in two dimensions are also performed, and it is confirmed that the universality between these models does hold. These results strongly indicate that the present singularity belongs to the same universality class as the Yang–Lee edge singularity.


2013 ◽  
Vol 28 (03n04) ◽  
pp. 1340006 ◽  
Author(s):  
OSCAR CHACALTANA ◽  
JACQUES DISTLER ◽  
YUJI TACHIKAWA

We study the local properties of a class of codimension-2 defects of the 6d [Formula: see text] theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra [Formula: see text], where [Formula: see text] is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU (N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k.


Sign in / Sign up

Export Citation Format

Share Document