scholarly journals Experimental study of the effect of water vapor on dynamics of a high electric field non-equilibrium diffuse discharge in air

Author(s):  
Alexandra Brisset ◽  
Pierre Tardiveau ◽  
Kristaq Gazeli ◽  
Blandine Bournonville ◽  
Pascal Jeanney ◽  
...  
Author(s):  
Yingxia Wei ◽  
Yaoxiang Liu ◽  
Tie-Jun Wang ◽  
Na Chen ◽  
Jingjing Ju ◽  
...  

We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2657 ◽  
Author(s):  
Liwei Zhou ◽  
Xuan Wang ◽  
Yongqi Zhang ◽  
Peng Zhang ◽  
Zhi Li

In order to study the crystallinity of different density polyethylenes, this paper conducts an experimental study on the transformation of the conductance mechanism under a high electric field. In this experiment, X-ray diffraction (XRD), differentials scanning calorimetry (DSC), direct current (DC) breakdown of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), medium-density polyethylene (MDPE) and high-density polyethylene (HDPE), as well as the conductivity characteristics under an electric field of 5–200 kV/mm are tested. In addition, the electric field–current density curves of the four kinds of polyethylene are fitted to analyze their conductance transition in non-ohmic regions under different high field strengths, through applying the mathematical formula of a variety of conductance mechanisms. The experimental results are as follows: as the density of polyethylene increases, the crystallinity increases continuously. Moreover, the continuous increase of crystallinity causes the electric conduction flow under the same field strength to decrease significantly. The field strength corresponding to the two turning points in the conductance characteristic curve increases simultaneously, and the breakdown field strength increases accordingly; through analysis, it is found that in the high field, as the electric field increases, the conductance mechanism develops from the ohmic conductance of the low field strength region to the bulk effect of the high field strength region (Poole–Frenkel effect). Then, it develops into the electrode effect to the high field strength (Schottky effect), although the threshold field strength of this conductance mechanism transition increases with the increase of crystallinity.


1901 ◽  
Vol 1 (1-2) ◽  
pp. 52-53
Author(s):  
F. Abramovich

Abstracts. Surgery.F. Abramovich. On the hemostatic effect of water vapor and hot air in case of liver injury. (Diss. SPb. 1900).This work, which is an experimental study, touches on one of the newest issues of clinical surgery - the issue of the use of water vapor and hot air to stop bleeding in case of liver injuries. The first of these accusations of all-embarrassment, or, simply, scalding, wasproposed a few years ago by prof. Snegirevym (in Moscow) and has a wide application in gynecological practice for various diseases of the female genital area; the second method burning with a jet of hot air was proposed by No-lapsiegsom and has a narrower application for operating on tissues and organs rich in blood vessels. The author of the above article performed a total of 29 experiments on 20 animals (5 on rabbits and 15 on dogs).


2020 ◽  
Vol 140 (8) ◽  
pp. 650-655
Author(s):  
Shoki Tsuji ◽  
Yoji Fujita ◽  
Hiroaki Urushibata ◽  
Akihiko Kono ◽  
Ryoichi Hanaoka ◽  
...  

2005 ◽  
Vol 22 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Alexander Donchev ◽  
Harald Fietzek ◽  
Vladislav Kolarik ◽  
Daniel Renusch ◽  
Michael Schütze

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


Sign in / Sign up

Export Citation Format

Share Document