Emulating artificial neuron and synaptic properties with SiO2-based memristive devices by tuning threshold and bipolar switching effects

2021 ◽  
Vol 54 (22) ◽  
pp. 225303 ◽  
Author(s):  
Panagiotis Bousoulas ◽  
Marianthi Panagopoulou ◽  
Nikos Boukos ◽  
Dimitris Tsoukalas
2019 ◽  
Vol 9 (4) ◽  
pp. 486-493 ◽  
Author(s):  
S. Sahoo ◽  
P. Manoravi ◽  
S.R.S. Prabaharan

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature. Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h). Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out. Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.


2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Silvia Battistoni ◽  
Victor Erokhin ◽  
Salvatore Iannotta

We explore and demonstrate the extension of the synapse-mimicking properties of memristive devices to a dysfunctional synapse as it occurs in the Alzheimer’s disease (AD) pathology. The ability of memristive devices to reproduce synapse properties such as LTP, LTD, and STDP has been already widely demonstrated, and moreover, they were used for developing artificial neuron networks (perceptrons) able to simulate the information transmission in a cell network. However, a major progress would be to extend the common sense of neuromorphic device even to the case of dysfunction of natural synapses. Can memristors efficiently simulate them? We provide here evidences of the ability of emulating the dysfunctional synaptic behavior typical of the AD pathology with organic memristive devices considering the effect of the disease not only on a single synapse but also in the case of a neural network, composed by numerous synapses.


ACS Nano ◽  
2021 ◽  
Author(s):  
Jingyun Wang ◽  
Changjiu Teng ◽  
Zhiyuan Zhang ◽  
Wenjun Chen ◽  
Junyang Tan ◽  
...  

2018 ◽  
Author(s):  
Gustavo A. Cardona ◽  
David Yanguas-Rojas ◽  
Luis G. Jaimes ◽  
Morrison Obeng ◽  
Xiaohe Wu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document