scholarly journals Analytic results for scalar-mediated Higgs bosonproduction in association with two jets

Author(s):  
Lucy Budge ◽  
John Malcolm Campbell ◽  
R. Keith Ellis ◽  
Satyajit Seth
Keyword(s):  
2018 ◽  
Vol 32 ◽  
pp. 01021
Author(s):  
Ştefan-Mugur Simionescu ◽  
Nilesh Dhondoo ◽  
Corneliu Bălan

In this study, the flow characteristics of an array of two circular, laminar air jets impinging on a smooth solid wall are experimentally and numerically investigated. Direct visualizations using high speed/resolution camera are performed. The evolution of the vortical structures in the area where the jet is deflected from axial to radial direction is emphasized, as well as the interaction between the two jets. A set of CFD numerical simulations in 2D flow domains are performed by using the commercial software Fluent, in the context of Reynolds-averaged Navier-Stokes (RANS) modeling. The numerical resultsare compared and validated with the experiments. The vorticity number is computed and plotted at two different positions from the jet nozzle, and a study of its distribution gives a clue on how the jets are interacting with each other in the proximity of the solid wall.


2012 ◽  
Vol 27 (01) ◽  
pp. 1230002
Author(s):  
JADRANKA SEKARIC

The recent claim by the CDF Collaboration of a possible anomalous dijet resonance in their data required experimental verification from other hadron collider experiments. We present a study of the dijet invariant mass spectrum in events with two jets produced in association with a W→ℓν boson at the DØ experiment. We investigate the dijet mass range between 110 GeV /c2 and 170 GeV /c2 and find no evidence for any resonant dijet production.


2020 ◽  
Vol 811 ◽  
pp. 135988
Author(s):  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
T. Bergauer ◽  
...  

2008 ◽  
Vol 617 ◽  
pp. 231-253 ◽  
Author(s):  
DANIEL J. BODONY ◽  
SANJIVA K. LELE

An analysis of the sound radiated by three turbulent, high-speed jets is conducted using Lighthill's acoustic analogy (Proc. R. Soc. Lond. A, vol. 211, 1952, p. 564). Computed by large eddy simulation the three jets operate at different conditions: a Mach 0.9 cold jet, a Mach 2.0 cold jet and a Mach 1.0 heated jet. The last two jets have the same jet velocity and differ only by temperature. None of the jets exhibit Mach wave characteristics. For these jets the comparison between the Lighthill-predicted sound and the directly computed sound is favourable for all jets and for the two angles (30° and 90°, measured from the downstream jet axis) considered. The momentum (ρuiuj) and the so-called entropy [p − p∞ − a∞2(ρ − ρ∞)] contributions are examined in the acoustic far field. It is found that significant phase cancellation exists between the momentum and entropy components. It is observed that for high-speed jets one cannot consider ρuiuj and (p′ − a∞2ρ′)δij as independent sources. In particular the ρ′ūxūx component of ρuiuj is strongly coupled with the entropy term as a consequence of compressibility and the high jet velocity and not because of a linear sound-generation mechanism. Further, in more usefully decoupling the momentum and entropic contributions, the decomposition of Tij due to Lilley (Tech. Rep. AGARD CP-131 1974) is preferred. Connections are made between the present results and the quieting of high-speed jets with heating.


2006 ◽  
Vol 73 (1) ◽  
Author(s):  
D. Acosta ◽  
T. Affolder ◽  
M. G. Albrow ◽  
D. Ambrose ◽  
D. Amidei ◽  
...  
Keyword(s):  

1984 ◽  
Vol 147 (6) ◽  
pp. 493-508 ◽  
Author(s):  
G. Arnison ◽  
O.C. Allkofer ◽  
A. Astbury ◽  
B. Aubert ◽  
C. Bacci ◽  
...  

2021 ◽  
Vol 409 ◽  
pp. 158-178
Author(s):  
Abdelkader Feddal ◽  
Abbes Azzi ◽  
Ahmed Zineddine Dellil

This paper deals with studying numerically two circular turbulent jets impinging on a flat surface with a low velocity cross flow by using ANSYS CFX 16.2, with the aim of proving the effect ofReynolds number on the flow demeanor in a vertical circular free turbulent jet with cross flow. Five turbulence models of the RANS (Reynolds Averaged Navier–Stokes) approach were tested and the k -ω SST model was chosen to validate CFD results with the experimental data. Average velocity profiles, velocity and turbulent kinetic energy contours and streamlines are presented for four case configurations. In the first three cases, the following parameters have been varied: Reynolds number at the level of the two jets ( ), wind velocity at the level of the cross-flow ( ), and the distance between the two jets (S = 45mm, 90mm and 135mm). In the last case, a new configuration of the phenomenon not yet studied so far was treated, where horizontal cross-flows were introduced from both sides in order to simulate gusts of wind disrupting a VSTOL aircraft which tries to operate close to the ground. This case was carried out for Reynolds number based on the crossflow of 4 104, 10 104 and 20 104 .The numerical results obtained show that the deflection of the jets is minimal when the Reynolds number at the level of the jets is greater than that of the cross-flow. The increase of Reynolds number at the level of the cross-flow reveals a significant deviation of the two jets with an intensity which always remains less for the second jet. As for the space parameter between the two jets, it turns out that the fact of further spacing the two jets makes the first jet even more vulnerable and leads to a greater deflection. Finally, the simulation of the wind gusts from the front and the back caused a zone of turbulence which resulted from a form of "interlacing" of the two jets under the effect of the transverse current imposed by the two sides.


Sign in / Sign up

Export Citation Format

Share Document