scholarly journals A translational flavor symmetry in the mass terms of Dirac and Majorana fermions

Author(s):  
Zhi-zhong Xing

Abstract Requiring the effective mass term for a category of fundamental Dirac or Majorana fermions of the same electric charge to be invariant under the translational transformations $\psi^{}_{\alpha \rm L (R)} \to \psi^{}_{\alpha \rm L (R)} + n^{}_{\alpha} z^{}_{\psi \rm L(R)}$ in the flavor space, where $n^{}_\alpha$ and $z^{}_{\psi \rm L(R)}$ stand respectively for the flavor-dependent complex numbers and a constant spinor field anticommuting with the fermion fields, we show that $n^{}_\alpha$ can be identified as the elements $U^{}_{\alpha i}$ in the $i$-th column of the unitary matrix $U$ used to diagonalize the corresponding Hermitian or symmetric fermion mass matrix $M^{}_\psi$, and $m^{}_i = 0$ holds accordingly. We find that the reverse is also true. Now that the mass spectra of charged leptons, up- and down-type quarks are all strongly hierarchical and current experimental data allow the lightest neutrino to be massless, we argue that the zero mass limit for the first-family fermions and the translational flavor symmetry behind it should be a natural starting point for building viable fermion mass models.

2010 ◽  
Vol 25 (32) ◽  
pp. 5897-5911 ◽  
Author(s):  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for θ of order unity, a Jarlskog invariant typically of order 10-5, as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.


2012 ◽  
Vol 27 (17) ◽  
pp. 1250087 ◽  
Author(s):  
MICHAEL J. BAKER ◽  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
TSOU SHEUNG TSUN

The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is "universal," rank-one and rotates (changes its orientation in generation space) with changing scale μ, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo–Kobayashi–Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.


Author(s):  
Naoyuki Haba ◽  
Yasuhiro Shimizu ◽  
Toshifumi Yamada

Abstract We present a model that gives a natural explanation to the charged lepton mass hierarchy and study the contributions to the electron and the muon $g-2$. In the model, we introduce lepton-flavor-dependent $U(1)_F$ symmetry and three additional Higgs doublets with $U(1)_F$ charges, to realize that each generation of charged leptons couples to one of the three additional Higgs doublets. The $U(1)_F$ symmetry is softly broken by $+1$ charges, and the smallness of the soft breaking naturally gives rise to the hierarchy of the Higgs vacuum expectation values, which then accounts for the charged lepton mass hierarchy. Since electron and muon couple to different scalar particles, each scalar contributes to the electron and the muon $g-2$ differently. We survey the space of parameters of the Higgs sector and find that there are sets of parameters that explain the muon $g-2$ discrepancy. On the other hand, we cannot find parameter sets that can explain the $g-2$ discrepancy within 2 $\sigma$. Here, the $U(1)_F$ symmetry suppresses charged lepton flavor violation.


Author(s):  
V V Vien ◽  
H N Long ◽  
A E Cárcamo Hernández

Abstract We construct a low-scale seesaw model to generate the masses of active neutrinos based on $S_4$ flavor symmetry supplemented by the $Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group, capable of reproducing the low-energy Standard Model (SM) fermion flavor data. The masses of the SM fermions and the fermionic mixing parameters are generated from a Froggatt–Nielsen mechanism after spontaneous breaking of the $S_4\times Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group. The obtained values for the physical observables of the quark and lepton sectors are in good agreement with the most recent experimental data. The leptonic Dirac CP-violating phase $\delta _\mathrm{CP}$ is predicted to be $259.579^\circ$ and the predictions for the absolute neutrino masses in the model can also saturate the recent constraints.


1994 ◽  
Vol 47 (4) ◽  
pp. 465 ◽  
Author(s):  
R Delbourgo ◽  
AB Waites

One of the interesting features about field theories in odd dimensions is the induction of parity-violating terms and well-defined finite topological actions via quantum loops if a fermion mass term is originally present and conversely. Aspects of this issue are illustrated for electrodynamics in 2+ 1 and 4+ 1 dimensions.


2014 ◽  
Vol 29 (33) ◽  
pp. 1450179
Author(s):  
G. K. Leontaris ◽  
N. D. Vlachos

We investigate the possibility of expressing the charged leptons and neutrino mass matrices as linear combinations of elements of a single finite group. Constraints imposed on the resulting mixing matrix by current data restrict the group types, but allow a nonzero value for the θ13 mixing angle.


1996 ◽  
Vol 11 (15) ◽  
pp. 2643-2660 ◽  
Author(s):  
R.E. GAMBOA SARAVÍ ◽  
G.L. ROSSINI ◽  
F.A. SCHAPOSNIK

We study parity violation in (2+1)-dimensional gauge theories coupled to massive fermions. Using the ζ function regularization approach we evaluate the ground state fermion current in an arbitrary gauge field background, showing that it gets two different contributions which violate parity invariance and induce a Chern–Simons term in the gauge field effective action. One is related to the well-known classical parity breaking produced by a fermion mass term in three dimensions; the other, already present for massless fermions, is related to peculiarities of gauge-invariant regularization in odd-dimensional spaces.


Sign in / Sign up

Export Citation Format

Share Document