Total finite element tearing and interconnection method for computationally efficient micromechanical analysis

2021 ◽  
Vol 29 (3) ◽  
pp. 035015
Author(s):  
Nagesh H Kulkarni ◽  
B P Gautham ◽  
Salil S Kulkarni
2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Joshua E. Johnson ◽  
Phil Lee ◽  
Terence E. McIff ◽  
E. Bruce Toby ◽  
Kenneth J. Fischer

Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the relationship between altered mechanics and OA. Better understanding of injuries and their relationship to OA may aid in the development or refinement of treatment methods. This may be partially achieved by monitoring changes in joint mechanics that are a direct consequence of injury. Techniques such as image-based finite element modeling can provide in vivo joint mechanics data but can also be laborious and computationally expensive. Alternate modeling techniques that can provide similar results in a computationally efficient manner are an attractive prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics data alone. The objective of this study was to compare joint contact mechanics from image-based surface contact modeling (SCM) and finite element modeling (FEM) in normal, injured (scapholunate ligament tear), and surgically repaired radiocarpal joints. Since FEM is accepted as the gold standard to evaluate joint contact stresses, our assumption was that results obtained using this method would accurately represent the true value. Magnetic resonance images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired when relaxed and during functional grasp. Surface and volumetric models of the radiolunate and radioscaphoid articulations were constructed from the relaxed images for SCM and FEM analyses, respectively. Kinematic boundary conditions were acquired from image registration between the relaxed and grasp images. For the SCM technique, a linear contact relationship was used to estimate contact outcomes based on interactions of the rigid articular surfaces in contact. For FEM, a pressure-overclosure relationship was used to estimate outcomes based on deformable body contact interactions. The SCM technique was able to evaluate variations in contact outcomes arising from scapholunate ligament injury and also the effects of surgical repair, with similar accuracy to the FEM gold standard. At least 80% of contact forces, peak contact pressures, mean contact pressures and contact areas from SCM were within 10 N, 0.5 MPa, 0.2 MPa, and 15 mm2, respectively, of the results from FEM, regardless of the state of the wrist. Depending on the application, the MRI-based SCM technique has the potential to provide clinically relevant subject-specific results in a computationally efficient manner compared to FEM.


Author(s):  
Y. F. Zhao ◽  
S. T. Tan ◽  
T. N. Wong ◽  
W. J. Chen

Abstract A constrained finite element method for modelling cloth deformation is developed. The bending deformation and the geometric constraint of developable surfaces of the cloth objects are considered. The representation of large rotation and the motion of rigid body are described using the current coordinates with the geometric constraint. The effectiveness of the present method is verified by comparing the thread deformation with the exact solution of catenary. Several examples are given to show that the proposed method converges quickly and is thus computationally efficient.


2000 ◽  
Author(s):  
Christopher D. Park ◽  
Linda P. Franzoni

Abstract Two model problems are solved using a combination of Analytical/Numerical Matching (ANM) and Finite Element Analysis (FEA). The first problem is that of a thick, finite length beam driven by the motion of a small rigid support attached to its lower boundary. The second problem is a thick, infinitely long fluid-loaded beam driven by the motion of periodically spaced rigid supports (identical to the support of the first problem). The ANM process divides an original problem into local, matching, and global sub-problems through the use of a smooth force and the principle of superposition. In the two model problems presented, the same high-resolution local (in vacuo) problem is solved using FEA. The fluid loading effects can be accounted for entirely by the global problem. The problems presented show that ANM is a computationally efficient method that retains the high accuracy needed near structural discontinuities.


Author(s):  
S. N. Medyanik ◽  
N. Vlahopoulos

The Energy Finite Element Analysis (EFEA) has been developed for modeling coupled structural-acoustic systems at mid-to-high frequencies when conventional finite element methods are no longer computationally efficient because they require very fine meshes. In standard Finite Element Analysis (FEA) approach, governing differential equations are formulated in terms of displacements which vary harmonically with space. This requires larger numbers of elements at higher frequencies when wavelengths become smaller. In the EFEA, governing differential equations are formulated in terms of energy density that is spatially averaged over a wavelength and time averaged over a period. The resulting solutions vary exponentially with space which makes them smooth and allows for using much coarser meshes. However, current EFEA formulations require exact matching between the meshes at the boundaries between structural and acoustic domains. This creates practical inconveniences in applying the method as well as limits its use to only fully compatible meshes. In this paper, a new formulation is presented that allows for using incompatible meshes in EFEA modeling, when shapes and/or sizes of elements at structural-acoustic interfaces do not match. In the main EFEA procedure, joints formulations between structural and acoustic domains have been changed in order to deal with non-matching elements. In addition, the new Pre-EFEA procedure which allows for automatic searching and formation of the new types of joints is developed for models with incompatible meshes. The new method is tested using a spherical shaped structural-acoustic interface. Results for incompatible meshes are validated by comparing to solutions obtained using regular compatible meshes. The effects of mesh incompatibility on the accuracy of results are discussed.


Sign in / Sign up

Export Citation Format

Share Document