Design and simulation of liquid infiltrated photonic crystal fibre in terahertz frequencies

2021 ◽  
Author(s):  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Abdul Mu'iz Maidi ◽  
Shubi Kaijage ◽  
Feroza Begum

Abstract Ethanol, methanol and water are polar solvents with similar physical properties albeit contrasting chemical properties. Therefore, it is essential to provide accurate and reliable methods for detecting these liquids. In this paper, a novel liquid infiltrated photonic crystal fibre for ethanol, methanol and water sensing is introduced. The novel structure is modelled, simulated and analysed in the terahertz (THz) region using a full vectorial finite element method. It is shown that the THz light, which is guided using modified total internal reflection, is confined within the infiltrated analytes with negligible losses. For the detection of infiltrated liquids at 1.6 THz operating frequency, the proposed fibre demonstrates high sensitivities up to 99.73% and confinement losses in the order of 10−4 dB/m. Manufacturing of the proposed fibre is feasible using existing fabrication technologies and it is envisaged that the fibre may provide a solution to existing challenges in detecting common polar solvents.

2013 ◽  
Vol 694-697 ◽  
pp. 497-502
Author(s):  
Jiang Tao Gai ◽  
Shou Dao Huang ◽  
Guang Ming Zhou ◽  
Yi Yuan

In order to search after a new way of the propulsion system of tracked vehicle, a novel structure form of electro-mechanical transmission was developed in this paper, through analyzing the advantages and disadvantages of existing projects of electric drive system for tracked vehicle. It could increase the rate of power exertion obviously and synthesize the mechanical and electrical strongpoint. And based on the structure form, an electro-mechanical transmission was designed with double electromotor added planetary mechanism of steering power coupling and gearshift, considering engineering realization. And then straight-line driving and steering performances of the transmission were calculated which proved that the novel electro-mechanical transmission could meet the requirement of tracked vehicle propulsion well.


2021 ◽  
pp. 109771
Author(s):  
Mahfuza Begum ◽  
A.K.M. Mizanur Rahman ◽  
H.A. Abdul-Rashid ◽  
Z. Yusoff ◽  
Siti Nurasiah Mat Nawi ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 488
Author(s):  
Hujun Jia ◽  
Mengyu Dong ◽  
Xiaowei Wang ◽  
Shunwei Zhu ◽  
Yintang Yang

A novel 4H-SiC MESFET was presented, and its direct current (DC), alternating current (AC) characteristics and power added efficiency (PAE) were studied. The novel structure improves the saturation current (Idsat) and transconductance (gm) by adding a heavily doped region, reduces the gate-source capacitance (Cgs) by adding a lightly doped region and improves the breakdown voltage (Vb) by embedding an insulated region (Si3N4). Compared to the double-recessed (DR) structure, the saturation current, the transconductance, the breakdown voltage, the maximum oscillation frequency (fmax), the maximum power added efficiency and the maximum theoretical output power density (Pmax) of the novel structure is increased by 24%, 21%, 9%, 11%, 14% and 34%, respectively. Therefore, the novel structure has excellent performance and has a broader application prospect than the double recessed structure.


2002 ◽  
Vol 38 (4) ◽  
pp. 167 ◽  
Author(s):  
I.G. Cormack ◽  
D.T. Reid ◽  
W.J. Wadsworth ◽  
J.C. Knight ◽  
P. St.J. Russell

Sign in / Sign up

Export Citation Format

Share Document