Relations between third-order and second-order structure functions for axisymmetric turbulence

2000 ◽  
Vol 1 ◽  
pp. N3 ◽  
Author(s):  
F Anselmet † ◽  
R A Antonia ◽  
M Ould-Rouis
2002 ◽  
Vol 468 ◽  
pp. 317-326 ◽  
Author(s):  
REGINALD J. HILL

Equations that follow from the Navier–Stokes equation and incompressibility but with no other approximations are ‘exact’. Exact equations relating second- and third- order structure functions are studied, as is an exact incompressibility condition on the second-order velocity structure function. Opportunities for investigations using these equations are discussed. Precisely defined averaging operations are required to obtain exact averaged equations. Ensemble, temporal and spatial averages are all considered because they produce different statistical equations and because they apply to theoretical purposes, experiment and numerical simulation of turbulence. Particularly simple exact equations are obtained for the following cases: (i) the trace of the structure functions, (ii) DNS that has periodic boundary conditions, and (iii) an average over a sphere in r-space. Case (iii) introduces the average over orientations of r into the structure-function equations. The energy dissipation rate ε appears in the exact trace equation without averaging, whereas in previous formulations ε appears after averaging and use of local isotropy. The trace mitigates the effect of anisotropy in the equations, thereby revealing that the trace of the third-order structure function is expected to be superior for quantifying asymptotic scaling laws. The orientation average has the same property.


2019 ◽  
Vol 49 (3) ◽  
pp. 675-690 ◽  
Author(s):  
Jenna Pearson ◽  
Baylor Fox-Kemper ◽  
Roy Barkan ◽  
Jun Choi ◽  
Annalisa Bracco ◽  
...  

AbstractThere are limitations in approximating Eulerian statistics from surface drifters, due to biases from surface convergences. By contrasting second- and third-order Eulerian and surface drifter structure functions obtained from a model of the Gulf of Mexico, the consequences of the semi-Lagrangian nature of observations during the summer Grand Lagrangian Deployment (GLAD) and winter Lagrangian Submesoscale Experiment (LASER) are estimated. By varying launch pattern and location, the robustness and sensitivity of these statistics are evaluated. Over scales less than 10 km, second-order structure functions of surface drifters consistently have shallower slopes (~r2/3) than Eulerian statistics (~r), suggesting that surface drifter structure functions differ systematically and do not reproduce the scalings of the Eulerian fields. Medians of Eulerian and cluster release second-order statistics are also significantly different across all scales. Synthetic cluster release statistics depend on launch location and weakly on launch pattern. The observations suggest little seasonal difference in the second-order statistics, but the LASER third-order structure function shows a sign change around 1 km, while GLAD and the synthetic cluster releases show a third-order structure function sign change around 10 km. Further, synthetic surface drifter cluster releases (and therefore likely the GLAD observations) show robust biases in the negative third-order structure functions, which may lead to significant overestimation of the spectral energy flux and underestimation of the transition scale to a forward energy cascade. The Helmholtz decomposition, and curl and divergence statistics, of Eulerian and cluster releases differ, particularly on scales less than 10 km, in agreement with observations of drifters preferentially sampling convergences in coherent structures.


2013 ◽  
Vol 61 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Jie Qin ◽  
Deyu Zhong ◽  
Guangqian Wang

Abstract Morphological characteristics of ripples are analyzed considering bed surfaces as two dimensional random fields of bed elevations. Two equilibrium phases are analyzed with respect to successive development of ripples based on digital elevation models. The key findings relate to the shape of the two dimensional second-order structure functions and multiscaling behavior revealed by higher-order structure functions. Our results suggest that (1) the two dimensional second-order structure functions can be used to differentiate the two equilibrium phases of ripples; and (2) in contrast to the elevational time series of ripples that exhibit significant multiscaling behavior, the DEMs of ripples at both equilibrium phases do not exhibit multiscaling behavior.


2018 ◽  
Vol 851 ◽  
pp. 672-686 ◽  
Author(s):  
Jin-Han Xie ◽  
Oliver Bühler

We derive and investigate exact expressions for third-order structure functions in stationary isotropic two-dimensional turbulence, assuming a statistical balance between random forcing and dissipation both at small and large scales. Our results extend previously derived asymptotic expressions in the enstrophy and energy inertial ranges by providing uniformly valid expressions that apply across the entire non-dissipative range, which, importantly, includes the forcing scales. In the special case of white noise in time forcing this leads to explicit predictions for the third-order structure functions, which are successfully tested against previously published high-resolution numerical simulations. We also consider spectral energy transfer rates and suggest and test a simple robust diagnostic formula that is useful when forcing is applied at more than one scale.


1999 ◽  
Vol 11 (8) ◽  
pp. 2251-2256 ◽  
Author(s):  
P. Constantin ◽  
Q. Nie ◽  
S. Tanveer

1970 ◽  
Vol 44 (1) ◽  
pp. 145-159 ◽  
Author(s):  
C. W. Van Atta ◽  
W. Y. Chen

Structure functions of turbulent velocity fluctuations up to fourth order have been measured at several heights in the atmospheric boundary layer over the open ocean, and the results are compared with theoretical predictions for separations in the inertial subrange. The behaviour of second- and third-order quantities shows substantial agreement with the predictions of Kolmogorov's original theory over a wide range of separations, but the results of a recent modification of the theory, attempting to account for intermittency in the local dissipation rate, are also consistent with the data over somewhat shorter separation intervals. The behaviour of the measured fourth-order structure function disagrees with that predicted from Kolmogorov's original work, but good agreement is found with the results of the modified theory.


2019 ◽  
Vol 874 ◽  
pp. 1169-1196 ◽  
Author(s):  
Pierre Augier ◽  
Ashwin Vishnu Mohanan ◽  
Erik Lindborg

The dynamics of irrotational shallow water wave turbulence forced at large scales and dissipated at small scales is investigated. First, we derive the shallow water analogue of the ‘four-fifths law’ of Kolmogorov turbulence for a third-order structure function involving velocity and displacement increments. Using this relation and assuming that the flow is dominated by shocks, we develop a simple model predicting that the shock amplitude scales as $(\unicode[STIX]{x1D716}d)^{1/3}$, where $\unicode[STIX]{x1D716}$ is the mean dissipation rate and $d$ the mean distance between the shocks, and that the $p$th-order displacement and velocity structure functions scale as $(\unicode[STIX]{x1D716}d)^{p/3}r/d$, where $r$ is the separation. Then we carry out a series of forced simulations with resolutions up to $7680^{2}$, varying the Froude number, $F_{f}=(\unicode[STIX]{x1D716}L_{f})^{1/3}/c$, where $L_{f}$ is the forcing length scale and $c$ is the wave speed. In all simulations a stationary state is reached in which there is a constant spectral energy flux and equipartition between kinetic and potential energy in the constant flux range. The third-order structure function relation is satisfied with a high degree of accuracy. Mean energy is found to scale approximately as $E\sim \sqrt{\unicode[STIX]{x1D716}L_{f}c}$, and is also dependent on resolution, indicating that shallow water wave turbulence does not fit into the paradigm of a Richardson–Kolmogorov cascade. In all simulations shocks develop, displayed as long thin bands of negative divergence in flow visualisations. The mean distance between the shocks is found to scale as $d\sim F_{f}^{1/2}L_{f}$. Structure functions of second and higher order are found to scale in good agreement with the model. We conclude that in the weak limit, $F_{f}\rightarrow 0$, shocks will become denser and weaker and finally disappear for a finite Reynolds number. On the other hand, for a given $F_{f}$, no matter how small, shocks will prevail if the Reynolds number is sufficiently large.


1997 ◽  
Vol 353 ◽  
pp. 67-81 ◽  
Author(s):  
REGINALD J. HILL

The equation relating second- and third-order velocity structure functions was presented by Kolmogorov; Monin attempted to derive that equation on the basis of local isotropy. Recently, concerns have been raised to the effect that Kolmogorov's equation and an ancillary incompressibility condition governing the third-order structure function were proven only on the restrictive basis of isotropy and that the statistic involving pressure that appears in the derivation of Kolmogorov's equation might not vanish on the basis of local isotropy. These concerns are resolved. In so doing, results are obtained for the second- and third-order statistics on the basis of local homogeneity without use of local isotropy. These results are applicable to future studies of the approach toward local isotropy. Accuracy of Kolmogorov's equation is shown to be more sensitive to anisotropy of the third-order structure function than to anisotropy of the second-order structure function. Kolmogorov's 4/5 law for the inertial range of the third-order structure function is obtained without use of the incompressibility conditions on the second- and third-order structure functions. A generalization of Kolmogorov's 4/5 law, which applies to the inertial range of locally homogeneous turbulence at very large Reynolds numbers, is shown to also apply to the energy-containing range for the more restrictive case of stationary, homogeneous turbulence. The variety of derivations of Kolmogorov's and Monin's equations leads to a wide range of applicability to experimental conditions, including, in some cases, turbulence of moderate Reynolds number.


2000 ◽  
Vol 61 (5) ◽  
pp. 5321-5325 ◽  
Author(s):  
T. Gomez ◽  
H. Politano ◽  
A. Pouquet

2019 ◽  
Vol 872 ◽  
pp. 752-783 ◽  
Author(s):  
Jin-Han Xie ◽  
Oliver Bühler

We present an idealized study of rotating stratified wave turbulence in a two-dimensional vertical slice model of the Boussinesq equations, focusing on the peculiar case of equal Coriolis and buoyancy frequencies. In this case the fully nonlinear fluid dynamics can be shown to be isotropic in the vertical plane, which allows the classical methods of isotropic turbulence to be applied. Contrary to ordinary two-dimensional turbulence, here a robust downscale flux of total energy is observed in numerical simulations that span the full parameter regime between Ozmidov and forcing scales. Notably, this robust downscale flux of the total energy does not hold separately for its various kinetic and potential components, which can exhibit both upscale and downscale fluxes, depending on the parameter regime. Using a suitable extension of the classical Kármán–Howarth–Monin equation, exact expressions that link third-order structure functions and the spectral energy flux are derived and tested against numerical results. These expressions make obvious that even though the total energy is robustly transferred downscale, the third-order structure functions are sign indefinite, which illustrates that the sign and the form of measured third-order structure functions are both crucially important in determining the direction of the spectral energy transfer.


Sign in / Sign up

Export Citation Format

Share Document