scholarly journals Impacts of Convergence on Structure Functions from Surface Drifters in the Gulf of Mexico

2019 ◽  
Vol 49 (3) ◽  
pp. 675-690 ◽  
Author(s):  
Jenna Pearson ◽  
Baylor Fox-Kemper ◽  
Roy Barkan ◽  
Jun Choi ◽  
Annalisa Bracco ◽  
...  

AbstractThere are limitations in approximating Eulerian statistics from surface drifters, due to biases from surface convergences. By contrasting second- and third-order Eulerian and surface drifter structure functions obtained from a model of the Gulf of Mexico, the consequences of the semi-Lagrangian nature of observations during the summer Grand Lagrangian Deployment (GLAD) and winter Lagrangian Submesoscale Experiment (LASER) are estimated. By varying launch pattern and location, the robustness and sensitivity of these statistics are evaluated. Over scales less than 10 km, second-order structure functions of surface drifters consistently have shallower slopes (~r2/3) than Eulerian statistics (~r), suggesting that surface drifter structure functions differ systematically and do not reproduce the scalings of the Eulerian fields. Medians of Eulerian and cluster release second-order statistics are also significantly different across all scales. Synthetic cluster release statistics depend on launch location and weakly on launch pattern. The observations suggest little seasonal difference in the second-order statistics, but the LASER third-order structure function shows a sign change around 1 km, while GLAD and the synthetic cluster releases show a third-order structure function sign change around 10 km. Further, synthetic surface drifter cluster releases (and therefore likely the GLAD observations) show robust biases in the negative third-order structure functions, which may lead to significant overestimation of the spectral energy flux and underestimation of the transition scale to a forward energy cascade. The Helmholtz decomposition, and curl and divergence statistics, of Eulerian and cluster releases differ, particularly on scales less than 10 km, in agreement with observations of drifters preferentially sampling convergences in coherent structures.

2002 ◽  
Vol 468 ◽  
pp. 317-326 ◽  
Author(s):  
REGINALD J. HILL

Equations that follow from the Navier–Stokes equation and incompressibility but with no other approximations are ‘exact’. Exact equations relating second- and third- order structure functions are studied, as is an exact incompressibility condition on the second-order velocity structure function. Opportunities for investigations using these equations are discussed. Precisely defined averaging operations are required to obtain exact averaged equations. Ensemble, temporal and spatial averages are all considered because they produce different statistical equations and because they apply to theoretical purposes, experiment and numerical simulation of turbulence. Particularly simple exact equations are obtained for the following cases: (i) the trace of the structure functions, (ii) DNS that has periodic boundary conditions, and (iii) an average over a sphere in r-space. Case (iii) introduces the average over orientations of r into the structure-function equations. The energy dissipation rate ε appears in the exact trace equation without averaging, whereas in previous formulations ε appears after averaging and use of local isotropy. The trace mitigates the effect of anisotropy in the equations, thereby revealing that the trace of the third-order structure function is expected to be superior for quantifying asymptotic scaling laws. The orientation average has the same property.


2019 ◽  
Vol 874 ◽  
pp. 1169-1196 ◽  
Author(s):  
Pierre Augier ◽  
Ashwin Vishnu Mohanan ◽  
Erik Lindborg

The dynamics of irrotational shallow water wave turbulence forced at large scales and dissipated at small scales is investigated. First, we derive the shallow water analogue of the ‘four-fifths law’ of Kolmogorov turbulence for a third-order structure function involving velocity and displacement increments. Using this relation and assuming that the flow is dominated by shocks, we develop a simple model predicting that the shock amplitude scales as $(\unicode[STIX]{x1D716}d)^{1/3}$, where $\unicode[STIX]{x1D716}$ is the mean dissipation rate and $d$ the mean distance between the shocks, and that the $p$th-order displacement and velocity structure functions scale as $(\unicode[STIX]{x1D716}d)^{p/3}r/d$, where $r$ is the separation. Then we carry out a series of forced simulations with resolutions up to $7680^{2}$, varying the Froude number, $F_{f}=(\unicode[STIX]{x1D716}L_{f})^{1/3}/c$, where $L_{f}$ is the forcing length scale and $c$ is the wave speed. In all simulations a stationary state is reached in which there is a constant spectral energy flux and equipartition between kinetic and potential energy in the constant flux range. The third-order structure function relation is satisfied with a high degree of accuracy. Mean energy is found to scale approximately as $E\sim \sqrt{\unicode[STIX]{x1D716}L_{f}c}$, and is also dependent on resolution, indicating that shallow water wave turbulence does not fit into the paradigm of a Richardson–Kolmogorov cascade. In all simulations shocks develop, displayed as long thin bands of negative divergence in flow visualisations. The mean distance between the shocks is found to scale as $d\sim F_{f}^{1/2}L_{f}$. Structure functions of second and higher order are found to scale in good agreement with the model. We conclude that in the weak limit, $F_{f}\rightarrow 0$, shocks will become denser and weaker and finally disappear for a finite Reynolds number. On the other hand, for a given $F_{f}$, no matter how small, shocks will prevail if the Reynolds number is sufficiently large.


1997 ◽  
Vol 353 ◽  
pp. 67-81 ◽  
Author(s):  
REGINALD J. HILL

The equation relating second- and third-order velocity structure functions was presented by Kolmogorov; Monin attempted to derive that equation on the basis of local isotropy. Recently, concerns have been raised to the effect that Kolmogorov's equation and an ancillary incompressibility condition governing the third-order structure function were proven only on the restrictive basis of isotropy and that the statistic involving pressure that appears in the derivation of Kolmogorov's equation might not vanish on the basis of local isotropy. These concerns are resolved. In so doing, results are obtained for the second- and third-order statistics on the basis of local homogeneity without use of local isotropy. These results are applicable to future studies of the approach toward local isotropy. Accuracy of Kolmogorov's equation is shown to be more sensitive to anisotropy of the third-order structure function than to anisotropy of the second-order structure function. Kolmogorov's 4/5 law for the inertial range of the third-order structure function is obtained without use of the incompressibility conditions on the second- and third-order structure functions. A generalization of Kolmogorov's 4/5 law, which applies to the inertial range of locally homogeneous turbulence at very large Reynolds numbers, is shown to also apply to the energy-containing range for the more restrictive case of stationary, homogeneous turbulence. The variety of derivations of Kolmogorov's and Monin's equations leads to a wide range of applicability to experimental conditions, including, in some cases, turbulence of moderate Reynolds number.


2007 ◽  
Vol 572 ◽  
pp. 255-260 ◽  
Author(s):  
ERIK LINDBORG

We derive two third-order structure function relations for quasi-geostrophic turbulence, one for the forward cascade of potential enstrophy and one for the inverse cascade of energy. These relations are the counterparts of Kolmovorov's (1941) four-fifths law for the third-order longitudinal structure functions of three-dimensional turbulence.


1999 ◽  
Vol 388 ◽  
pp. 259-288 ◽  
Author(s):  
ERIK LINDBORG

The statistical features of turbulence can be studied either through spectral quantities, such as the kinetic energy spectrum, or through structure functions, which are statistical moments of the difference between velocities at two points separated by a variable distance. In this paper structure function relations for two-dimensional turbulence are derived and compared with calculations based on wind data from 5754 airplane flights, reported in the MOZAIC data set. For the third-order structure function two relations are derived, showing that this function is generally positive in the two-dimensional case, contrary to the three-dimensional case. In the energy inertial range the third-order structure function grows linearly with separation distance and in the enstrophy inertial range it grows cubically with separation distance. A Fourier analysis shows that the linear growth is a reflection of a constant negative spectral energy flux, and the cubic growth is a reflection of a constant positive spectral enstrophy flux. Various relations between second-order structure functions and spectral quantities are also derived. The measured second-order structure functions can be divided into two different types of terms, one of the form r2/3, giving a k−5/3-range and another, including a logarithmic dependence, giving a k−3-range in the energy spectrum. The structure functions agree better with the two-dimensional isotropic relation for larger separations than for smaller separations. The flatness factor is found to grow very fast for separations of the order of some kilometres. The third-order structure function is accurately measured in the interval [30, 300] km and is found to be positive. The average enstrophy flux is measured as Πω≈1.8×10−13 s−3 and the constant in the k−3-law is measured as [Kscr ]≈0.19. It is argued that the k−3-range can be explained by two-dimensional turbulence and can be interpreted as an enstrophy inertial range, while the k−5/3-range can probably not be explained by two-dimensional turbulence and should not be interpreted as a two-dimensional energy inertial range.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Peter Brearley ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

The second-order velocity structure function statistics have been analysed using a DNS database of statistically planar turbulent premixed flames subjected to unburned gas forcing. The flames considered here represent combustion for moderate values of Karlovitz number from the wrinkled flamelets to the thin reaction zones regimes of turbulent premixed combustion. It has been found that the second-order structure functions exhibit the theoretical asymptotic scalings in the dissipative and (relatively short) inertial ranges. However, the constant of proportionality for the theoretical asymptotic variation for the inertial range changes from one case to another, and this value also changes with structure function orientation. The variation of the structure functions for small length scale separation remains proportional to the square of the separation distance. However, the constant of proportionality for the limiting behaviour according to the separation distance square remains significantly different from the theoretical value obtained in isotropic turbulence. The disagreement increases with increasing turbulence intensity. It has been found that turbulent velocity fluctuations within the flame brush remain anisotropic for all cases considered here and this tendency strengthens towards the trailing edge of the flame brush. It indicates that the turbulence models derived based on the assumptions of homogeneous isotropic turbulence may not be fully valid for turbulent premixed flames.


2019 ◽  
Vol 49 (12) ◽  
pp. 3069-3085 ◽  
Author(s):  
Henry Chang ◽  
Helga S. Huntley ◽  
A. D. Kirwan Jr. ◽  
Daniel F. Carlson ◽  
Jean A. Mensa ◽  
...  

AbstractWe present an analysis of ocean surface dispersion characteristics, on 1–100-m scales, obtained by optically tracking a release of bamboo plates for 2 h in the northern Gulf of Mexico. Under sustained 5–6 m s−1 winds, energetic Langmuir cells are clearly delineated in the spatially dense plate observations. Within 10 min of release, the plates collect in windrows with 15-m spacing aligned with the wind. Windrow spacing grows, through windrow merger, to 40 m after 20 min and then expands at a slower rate to 50 m. The presence of Langmuir cells produces strong horizontal anisotropy and scale dependence in all surface dispersion statistics computed from the plate observations. Relative dispersion in the crosswind direction initially dominates but eventually saturates, while downwind dispersion exhibits continual growth consistent with contributions from both turbulent fluctuations and organized mean shear. Longitudinal velocity differences in the crosswind direction indicate mean convergence at scales below the Langmuir cell diameter and mean divergence at larger scales. Although the second-order structure function measured by contemporaneous GPS-tracked surface drifters drogued at ~0.5 m shows persistent r2/3 power law scaling down to 100–200-m separation scales, the second-order structure function for the very near surface plates observations has considerably higher energy and significantly shallower slope at scales below 100 m. This is consistent with contemporaneous data from undrogued surface drifters and previously published model results indicating shallowing spectra in the presence of direct wind-wave forcing mechanisms.


2008 ◽  
Vol 602 ◽  
pp. 287-302 ◽  
Author(s):  
P. A. DAVIDSON ◽  
P.-Å. KROGSTAD

In the limit of vanishing viscosity, ν→0, Kolmogorov's two-thirds, 〈(Δυ)2〉~ε2/3r2/3, and five-thirds, E~ε2/3k−5/3, laws are formally equivalent. (Here 〈(Δυ)2〉 is the second-order structure function, ε the dissipation rate, r the separation in physical space, E the three-dimensional energy spectrum, and k the wavenumber.) However, for the Reynolds numbers encountered in terrestrial experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. We ask why this should be. To this end, we create artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled. We choose the energy of eddies of scale, s, to vary as s2/3, in accordance with Kolmogorov's 1941 law, and vary the range of scales, γ=smax/smin, in any one realization from γ=25 to γ=800. This is equivalent to varying the Reynolds number in an experiment from Rλ=60 to Rλ=600. We find that, while there is some evidence of a five-thirds law for γ>50; (Rλ>100), the two-thirds law only starts to become apparent when γ approaches 200 (Rλ~240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, 〈(Δυ)2〉 takes the form of a mixed power law, a1 + a2r2 + a3r2/3, where a2r2 tracks the variation in enstrophy and a3r2/3 the variation in energy. These findings are shown to be consistent with experimental data where the ‘pollution’ of the r2/3 law by the enstrophy contribution, a2r2, is clearly evident. We show that higher-order structure functions (of even order) suffer from a similar deficiency.


2014 ◽  
Vol 755 ◽  
pp. 294-313 ◽  
Author(s):  
Enrico Deusebio ◽  
P. Augier ◽  
E. Lindborg

AbstractFirst, we review analytical and observational studies on third-order structure functions including velocity and buoyancy increments in rotating and stratified turbulence and discuss how these functions can be used in order to estimate the flux of energy through different scales in a turbulent cascade. In particular, we suggest that the negative third-order velocity–temperature–temperature structure function that was measured by Lindborg & Cho (Phys. Rev. Lett., vol. 85, 2000, p. 5663) using stratospheric aircraft data may be used in order to estimate the downscale flux of available potential energy (APE) through the mesoscales. Then, we calculate third-order structure functions from idealized simulations of forced stratified and rotating turbulence and compare with mesoscale results from the lower stratosphere. In the range of scales with a downscale energy cascade of kinetic energy (KE) and APE we find that the third-order structure functions display a negative linear dependence on separation distance $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}} r $, in agreement with observation and supporting the interpretation of the stratospheric data as evidence of a downscale energy cascade. The spectral flux of APE can be estimated from the relevant third-order structure function. However, while the sign of the spectral flux of KE is correctly predicted by using the longitudinal third-order structure functions, its magnitude is overestimated by a factor of two. We also evaluate the third-order velocity structure functions that are not parity invariant and therefore display a cyclonic–anticyclonic asymmetry. In agreement with the results from the stratosphere, we find that these functions have an approximate $ r^{2} $-dependence, with strong dominance of cyclonic motions.


Sign in / Sign up

Export Citation Format

Share Document