scholarly journals A single scalar field model of dark energy with equation of state crossing −1

2005 ◽  
Vol 2005 (12) ◽  
pp. 002-002 ◽  
Author(s):  
Mingzhe Li ◽  
Bo Feng ◽  
Xinmin Zhang



2012 ◽  
Vol 86 (10) ◽  
Author(s):  
Orfeu Bertolami ◽  
Pedro Carrilho ◽  
Jorge Páramos


2006 ◽  
Vol 15 (11) ◽  
pp. 1947-1961 ◽  
Author(s):  
WEI FANG ◽  
H. Q. LU ◽  
B. LI ◽  
K. F. ZHANG

We study the Non-Linear Born–Infeld (NLBI) scalar field model and quintessence model with two different potentials (V(ϕ) = -sϕ and [Formula: see text]). We investigate the differences between these two models. We explore the equation of state parameter w and the evolution of scale factor a(t) in both the NLBI scalar field and quintessence model. The present age of universe and the transition redshift are also obtained. We use the Gold dataset of 157 SN-Ia to constrain the parameters of the two models. All the results show that the NLBI model is slightly superior to the quintessence model.



2013 ◽  
Vol 91 (1) ◽  
pp. 54-59 ◽  
Author(s):  
F. Adabi ◽  
K. Karami ◽  
M. Mousivand

We investigate the correspondence between the ghost and Chaplygin scalar field dark energy models in the framework of Einstein gravity. We consider a spatially nonflat Friedmann–Robertson–Walker universe containing dark energy that interacts with dark matter. We reconstruct the potential and the dynamics for the Chaplygin scalar field model according to the evolutionary behavior of ghost dark energy, which can describe the phantomic accelerated expansion of the universe.







2020 ◽  
Vol 17 (04) ◽  
pp. 2050056
Author(s):  
Sunil Kumar Tripathy ◽  
Subingya Pandey ◽  
Alaka Priyadarsini Sendha ◽  
Dipanjali Behera

A bouncing scenario is studied in the framework of generalized Brans–Dicke theory. In order to have a dark energy (DE) driven late time cosmic acceleration, we have considered a unified dark fluid simulated by a linear equation of state (EoS). The evolutionary behavior of the DE equation of parameter derived from the unified dark fluid has been discussed. The effect of the bouncing scale factor on the Brans–Dicke parameter, self-interacting potential and the Brans–Dicke scalar field is investigated.



2017 ◽  
Vol 32 (12) ◽  
pp. 1750073 ◽  
Author(s):  
D. Bazeia ◽  
F. S. Bemfica

In this work, we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here, we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.



2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.



Sign in / Sign up

Export Citation Format

Share Document