scholarly journals Nonlinear definition of the shadowy mode in higher-order scalar-tensor theories

2021 ◽  
Vol 2021 (12) ◽  
pp. 020
Author(s):  
Antonio De Felice ◽  
Shinji Mukohyama ◽  
Kazufumi Takahashi

Abstract We study U-DHOST theories, i.e., higher-order scalar-tensor theories which are degenerate only in the unitary gauge and yield an apparently unstable extra mode in a generic coordinate system. We show that the extra mode satisfies a three-dimensional elliptic differential equation on a spacelike hypersurface, and hence it does not propagate. We clarify how to treat this “shadowy” mode at both the linear and the nonlinear levels.

2011 ◽  
Vol 32 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Connor Green ◽  
Clare Fitzpatrick ◽  
David FitzPatrick ◽  
Michael Stephens ◽  
William Quinlan ◽  
...  

2003 ◽  
Vol 2003 (15) ◽  
pp. 865-880 ◽  
Author(s):  
Nguyen Thanh Lan

For the higher-order abstract differential equationu(n)(t)=Au(t)+f(t),t∈ℝ, we give a new definition of mild solutions. We then characterize the regular admissibility of a translation-invariant subspaceℳofBUC(ℝ,E)with respect to the above-mentioned equation in terms of solvability of the operator equationAX−X𝒟n=C. As applications, periodicity and almost periodicity of mild solutions are also proved.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Oliver M. O'Reilly ◽  
Mark P. Sena ◽  
Brian T. Feeley ◽  
Jeffrey C. Lotz

In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the “nonorthogonal projections” presented in a recent paper by Desroches et al. (2010, “Expression of Joint Moment in the Joint Coordinate System,” ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144) and Fujie et al. (1996, “Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control,” Journal of Biomechanics, 29(12), pp. 1577–1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses.


Author(s):  
M. M. Grigoriev ◽  
G. F. Dargush

Higher-order boundary element methods (BEM) are presented for three-dimensional steady convective heat diffusion at high Peclet numbers. An accurate and efficient boundary element formulation is facilitated by the definition of an influence domain due to convective kernels. This approach essentially localizes the surface integrations only within the domain of influence which becomes more narrowly focused as the Peclet number increases. The outcome of this phenomenon is an increased sparsity and improved conditioning of the global matrix. Therefore, iterative solvers for sparse matrices become a very efficient and robust tool for the corresponding boundary element matrices. In this paper, we consider an example problem with an exact solution and investigate the accuracy and efficiency of the higher-order BEM formulations for high Peclet numbers in the range from 1,000 to 100,000. The bi-quartic boundary elements included in this study are shown to provide very efficient and extremely accurate solutions, even on a single engineering workstation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


Author(s):  
Robert D. Nelson ◽  
Sharon R. Hasslen ◽  
Stanley L. Erlandsen

Receptors are commonly defined in terms of number per cell, affinity for ligand, chemical structure, mode of attachment to the cell surface, and mechanism of signal transduction. We propose to show that knowledge of spatial distribution of receptors on the cell surface can provide additional clues to their function and components of functional control.L-selectin and Mac-1 denote two receptor populations on the neutrophil surface that mediate neutrophil-endothelial cell adherence interactions and provide for targeting of neutrophil recruitment to sites of inflammation. We have studied the spatial distributions of these receptors using LVSEM and backscatter imaging of isolated human neutrophils stained with mouse anti-receptor (primary) antibody and goat anti-mouse (secondary) antibody conjugated to 12 nm colloidal gold. This combination of techniques provides for three-dimensional analysis of the expression of these receptors on different surface membrane domains of the neutrophil: the ruffles and microvilli that project from the cell surface, and the cell body between these projecting structures.


2021 ◽  
Vol 13 (8) ◽  
pp. 1537
Author(s):  
Antonio Adán ◽  
Víctor Pérez ◽  
José-Luis Vivancos ◽  
Carolina Aparicio-Fernández ◽  
Samuel A. Prieto

The energy monitoring of heritage buildings has, to date, been governed by methodologies and standards that have been defined in terms of sensors that record scalar magnitudes and that are placed in specific positions in the scene, thus recording only some of the values sampled in that space. In this paper, however, we present an alternative to the aforementioned technologies in the form of new sensors based on 3D computer vision that are able to record dense thermal information in a three-dimensional space. These thermal computer vision-based technologies (3D-TCV) entail a revision and updating of the current building energy monitoring methodologies. This paper provides a detailed definition of the most significant aspects of this new extended methodology and presents a case study showing the potential of 3D-TCV techniques and how they may complement current techniques. The results obtained lead us to believe that 3D computer vision can provide the field of building monitoring with a decisive boost, particularly in the case of heritage buildings.


1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


Sign in / Sign up

Export Citation Format

Share Document