The Sharma–Tasso–Olver–Burgers equation: Its conservation laws and kink solitons

Author(s):  
Kamyar Hosseini ◽  
Arzu Akbulut ◽  
Dumitru Baleanu ◽  
Soheil Salahshour

Abstract The present paper deals with the Sharma–Tasso–Olver–Burgers equation (STOBE) and its conservation laws and kink solitons. More precisely, the formal Lagrangian, Lie symmetries, and adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws. Kink solitons of the STOBE are then extracted through adopting a series of newly well-designed approaches such as Kudryashov and exponential methods. Diverse graphs in 3D postures are formally portrayed to reveal the dynamical features of kink solitons. According to the authors’ knowledge, the outcomes of the current investigation are new and have been listed for the first time.

2021 ◽  
Author(s):  
K. Hosseini ◽  
Mohammad Mirzazadeh ◽  
L. Akinyemi ◽  
D. Baleanu ◽  
S. Salahshour

Abstract The major goal of the present paper is to construct optical solitons of the Ginzburg–Landau (GL) equation including the parabolic nonlinearity. Such an ultimate goal is formally achieved with the aid of symbolic computation, a complex transformation, and Kudryashov and exponential methods. Several numerical simulations are given to explore the influence of the coefficients of nonlinear terms on the dynamical features of the obtained optical solitons. To the best of the authors’ knowledge, the results reported in the current study, classified as bright and kink solitons, are new and have been acquired for the first time.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bo Xu ◽  
Yufeng Zhang ◽  
Sheng Zhang

AbstractAblowitz–Kaup–Newell–Segur (AKNS) linear spectral problem gives birth to many important nonlinear mathematical physics equations including nonlocal ones. This paper derives two fractional order AKNS hierarchies which have not been reported in the literature by equipping the AKNS spectral problem and its adjoint equations with local fractional order partial derivative for the first time. One is the space-time fractional order isospectral AKNS (stfisAKNS) hierarchy, three reductions of which generate the fractional order local and nonlocal nonlinear Schrödinger (flnNLS) and modified Kortweg–de Vries (fmKdV) hierarchies as well as reverse-t NLS (frtNLS) hierarchy, and the other is the time-fractional order non-isospectral AKNS (tfnisAKNS) hierarchy. By transforming the stfisAKNS hierarchy into two fractional bilinear forms and reconstructing the potentials from fractional scattering data corresponding to the tfnisAKNS hierarchy, three pairs of uniform formulas of novel N-fractal solutions with Mittag-Leffler functions are obtained through the Hirota bilinear method (HBM) and the inverse scattering transform (IST). Restricted to the Cantor set, some obtained continuous everywhere but nondifferentiable one- and two-fractal solutions are shown by figures directly. More meaningfully, the problems worth exploring of constructing N-fractal solutions of soliton equation hierarchies by HBM and IST are solved, taking stfisAKNS and tfnisAKNS hierarchies as examples, from the point of view of local fractional order derivatives. Furthermore, this paper shows that HBM and IST can be used to construct some N-fractal solutions of other soliton equation hierarchies.


2020 ◽  
Vol 13 (10) ◽  
pp. 2691-2701
Author(s):  
María-Santos Bruzón ◽  
◽  
Elena Recio ◽  
Tamara-María Garrido ◽  
Rafael de la Rosa

2017 ◽  
Vol 67 (2) ◽  
pp. 157 ◽  
Author(s):  
Chun-Yan Qin ◽  
Shou-Fu Tian ◽  
Xiu-Bin Wang ◽  
Tian-Tian Zhang

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1987
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

The Frobenius KDV equation and the Frobenius KP equation are introduced, and the Frobenius Kompaneets equation, Frobenius Burgers equation and Frobenius Harry Dym equation are constructed by taking values in a commutative subalgebra Z2ε in the paper. The five equations are selected as examples to help us study the self-adjointness of Frobenius type equations, and we show that the first two equations are quasi self-adjoint and the last three equations are nonlinear self-adjointness. It follows that we give the symmetries of the Frobenius KDV and the Frobenius KP equation in order to construct the corresponding conservation laws.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 795-800 ◽  
Author(s):  
Chaudry Masood Khalique ◽  
Innocent Simbanefayi

AbstractIn this paper we study the modified equal width-Burgers equation, which describes long wave propagation in nonlinear media with dispersion and dissipation. Using the Lie symmetry method in conjunction with the (G'/G)− expansion method we construct its travelling wave solutions. Also, we determine the conservation laws by invoking the new conservation theorem due to Ibragimov. As a result we obtain energy and linear momentum conservation laws.


Sign in / Sign up

Export Citation Format

Share Document