The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator

2012 ◽  
Vol 21 (3) ◽  
pp. 034203
Author(s):  
Tong-Tong Wang ◽  
Hong-Yi Fan
2018 ◽  
Vol 57 (6) ◽  
pp. 1888-1893
Author(s):  
Zhisong Yu ◽  
Guihua Ren ◽  
Ziyang Yu ◽  
Chenhuinan Wei ◽  
Hongyi Fan

2007 ◽  
Vol 21 (27) ◽  
pp. 1831-1836 ◽  
Author(s):  
HONG-YI FAN ◽  
QIN GUO

Through the Radon transformation of the normally ordered Wigner operator we introduce two mutually conjugate intermediate coordinate-momentum representations. Based on them we construct the appropriate quantum phase space theory which includes the new Wigner operator adapting to this space. We find that the new Wigner function's marginal distribution for a state |Ψ〉 is just the quantum tomogram of the state |Ψ〉.


Author(s):  
Richard Healey

If a quantum state is prescriptive then what state should an agent assign, what expectations does this justify, and what are the grounds for those expectations? I address these questions and introduce a third important idea—decoherence. A subsystem of a system assigned an entangled state may be assigned a mixed state represented by a density operator. Quantum state assignment is an objective matter, but the correct assignment must be relativized to the physical situation of an actual or hypothetical agent for whom its prescription offers good advice, since differently situated agents have access to different information. However this situation is described, it is true, empirically significant magnitude claims that make the description correct, while others provide the objective grounds for the agent’s expectations. Quantum models of environmental decoherence certify the empirical significance of these magnitude claims while also licensing application of the Born rule to others without mentioning measurement.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Fedor Levkovich-Maslyuk

Abstract The major simplification in a number of quantum integrable systems is the existence of special coordinates in which the eigenstates take a factorised form. Despite many years of studies, the basis realising the separation of variables (SoV) remains unknown in $$ \mathcal{N} $$ N = 4 SYM and similar models, even though it is widely believed they are integrable. In this paper we initiate the SoV approach for observables with nontrivial coupling dependence in a close cousin of $$ \mathcal{N} $$ N = 4 SYM — the fishnet 4D CFT. We develop the functional SoV formalism in this theory, which allows us to compute non-perturbatively some nontrivial observables in a form suitable for numerical evaluation. We present some applications of these methods. In particular, we discuss the possible SoV structure of the one-point correlators in presence of a defect, and write down a SoV-type expression for diagonal OPE coefficients involving an arbitrary state and the Lagrangian density operator. We believe that many of the findings of this paper can be applied in the $$ \mathcal{N} $$ N = 4 SYM case, as we speculate in the last part of the article.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Georgy Y. Prokhorov ◽  
Oleg V. Teryaev ◽  
Valentin I. Zakharov

2007 ◽  
Vol 14 (4) ◽  
pp. 661-671
Author(s):  
Jacek Hejduk ◽  
Anna Loranty

Abstract This paper contains some results connected with topologies generated by lower and semi-lower density operators. We show that in some measurable spaces (𝑋, 𝑆, 𝐽) there exists a semi-lower density operator which does not generate a topology. We investigate some properties of nowhere dense sets, meager sets and σ-algebras of sets having the Baire property, associated with the topology generated by a semi-lower density operator.


2014 ◽  
Vol 28 (03) ◽  
pp. 1450046
Author(s):  
B. H. J. McKELLAR

In a particular exactly solvable model of an interacting system, the Boltzmann equation predicts a constant single particle density operator, whereas the exact solution gives a single particle density operator with a nontrivial time dependence. All of the time dependence of the single particle density operator is generated by the correlations.


1992 ◽  
Vol 07 (21) ◽  
pp. 5317-5335 ◽  
Author(s):  
LEUNG CHIM ◽  
ALEXANDER ZAMOLODCHIKOV

Two-dimensional quantum field theory obtained by perturbing the q-state Potts-model CFT (0<q<4) with the energy-density operator Φ(2, 1) is shown to be integrable. The particle content of this QFT is conjectured and the factorizable S matrix is proposed. The limit q→1 is related to the isotropic-percolation problem in 2D and so we make a few predictions about the size distributions of the percolating clusters in the scaling domain.


Sign in / Sign up

Export Citation Format

Share Document