Self-Screening of the polarized electric field in Wurtzite Gallium Nitride along [0001] direction

2021 ◽  
Author(s):  
Qiu-Ling Qiu ◽  
Shi-Xu Yang ◽  
Qian-Shu Wu ◽  
Cheng-Lang Li ◽  
Qi Zhang ◽  
...  

Abstract The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-light-emitting diodes (white LEDs), high electron mobility transistors (HEMTs) and GaN Polarization SuperJunctions. However, the current researches on the polarization mechanism of GaN-based materials are not sufficient. In this paper, we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design (TCAD) simulation. The self-screening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively. We believe that the formation of high-density two-dimensional electron gas (2DEG) in GaN is the accumulation of screening charges. So that, we also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.

1998 ◽  
Vol 535 ◽  
Author(s):  
T. Feng ◽  
A. Dimoulas ◽  
N. Strifas ◽  
A. Christou

AbstractAlGaAs/GaAs based high electron mobility transistors (HEMTs) with Cu/Ti metallized gates have been fabricated. Copper gates were used to achieve low gate resistance and to minimize the hydrogen induced device degradation. The DC measurement of the processed AlGaAs/GaAs HEMTs with Cu/Ti gates shows comparable performance to similar Au based GaAs HEMTs. The Cu-based HEMTs were also subjected to elevated temperature testing under 5% H2 –N2 forming gas up to 250°C and 8 hours and no degradation due to hydrogen effects was found.


2014 ◽  
Vol 778-780 ◽  
pp. 1180-1184
Author(s):  
Sebastian Roensch ◽  
Victor Sizov ◽  
Takuma Yagi ◽  
Saad Murad ◽  
Lars Groh ◽  
...  

We present temperature dependent magnetoresistance measurements on the 2-dimensional electron gas of epitaxially grown AlGaN/GaN heterojunctions on silicon (Si). We report on the quantum correction to the classical conductance. In particular we found weak localization, electron-electron-interaction, and Shubnikov-de Haas oscillations. The results verify the high material quality of the investigated GaN on silicon.


2019 ◽  
Author(s):  
Xiejia

High electron mobility AlGaN/GaN have been successfully grown on low cost and high challenges AlN/Si substrates. By inserting a thin SiN layer between GaN and AlN to improve the quality of GaN, the result showed that the thin SiN layer could greatly increase the mobility of the two-dimensional electron gas formed at the interface of AlGaN and GaN layers. This suggests that it is possible to grow high-quality GaN on silicon as well as on sapphire for many applications


Sign in / Sign up

Export Citation Format

Share Document