Coherence migration in high-dimensional bipartite systems

2022 ◽  
Author(s):  
Zhi-Yong Ding ◽  
Pan-Feng Zhou ◽  
Xiao-Gang Fan ◽  
Cheng-Cheng Liu ◽  
Juan He ◽  
...  

Abstract The conservation law for first-order coherence and mutual correlation of a bipartite qubit state is first proposed by Svozilík et al. [Phys. Rev. Lett. 115, 220501 (2015)], and their theories laid the foundation for the study of coherence migration under unitary transformations. In this paper, we generalize the framework of first-order coherence and mutual correlation to an arbitrary $(m \otimes n)$-dimensional bipartite composite state by introducing an extended Bloch decomposition form of the state. We also generalize two kinds of unitary operators in high-dimensional systems, which can bring about coherence migration and help to obtain the maximum or minimum first-order coherence. Meanwhile, coherence migration in open quantum systems are investigated. We take depolarizing channels as examples and establish that the reduced first-order coherence of the principal system over time is completely transformed into mutual correlation of the $(2 \otimes 4)$-dimensional system-environment bipartite composite state. It is expected that our results may provide a valuable idea or method for controlling the quantum resource such as coherence and quantum correlations.

2018 ◽  
Vol 173 ◽  
pp. 01006 ◽  
Author(s):  
Aurelian Isar

We describe the generation of quantum correlations (entanglement, discord and steering) in a system composed of two coupled non-resonant bosonic modes immersed in a common thermal reservoir, in the framework of the theory of open systems. We show that for separable initial squeezed thermal states entanglement generation may take place, for definite values of squeezing parameter, average photon numbers, temperature of the thermal bath, dissipation constant and strength of interaction between the two bosonic modes. We also show that for initial uni-modal squeezed states Gaussian discord can be generated for all non-zero values of the strength of interaction between the modes. Likewise, for an initial separable state, a generation of Gaussian steering may take place temporarily, for definite values of the parameters characterizing the initial state and the thermal environment, and the strength of coupling between the two modes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiří Svozilík ◽  
Raúl Hidalgo-Sacoto ◽  
Ievgen I. Arkhipov

Abstract A universal characterization of non-Markovianity for any open hybrid quantum systems is presented. This formulation is based on the negativity volume of the generalized Wigner function, which serves as an indicator of the quantum correlations in any composite quantum systems. It is shown, that the proposed measure can be utilized for any single or multi-partite quantum system, containing any discrete or continuous variables. To demonstrate its power in revealing non-Markovianity in such quantum systems, we additionally consider a few illustrative examples.


2017 ◽  
Vol 16 (4) ◽  
Author(s):  
Farkhondeh Abbasnezhad ◽  
Somayeh Mehrabankar ◽  
Davood Afshar ◽  
Mojtaba Jafarpour

2019 ◽  
Vol 16 (07) ◽  
pp. 1950109
Author(s):  
Fatima-Zahra Siyouri ◽  
Hicham Ait Mansour ◽  
Fadoua Elbarrichi

We investigate the ability of Wigner function to reveal and measure general quantum correlations in two-qubit open system. For this purpose, we analyze comparatively their dynamics for two different states, continuous-variable Werner states (CWS) and Bell-diagonal states (BDS), independently interacting with dephasing reservoirs. Then, we explore the effects of decreasing the degree of non-Markovianity on their behavior. We show that the presence of both quantum entanglement and quantum discord allow to have a negative Wigner function, in contrast to the result obtained for the closed two-qubit system [F. Siyouri, M. El Baz and Y. Hassouni, The negativity of Wigner function as a measure of quantum correlations, Quantum Inf. Process. 15(10) (2016) 4237–4252]. In fact, we conclude that negativity of Wigner function can be used to capture and quantify the amount of general non-classical correlations in open quantum systems.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345053 ◽  
Author(s):  
ROSARIO LO FRANCO ◽  
BRUNO BELLOMO ◽  
SABRINA MANISCALCO ◽  
GIUSEPPE COMPAGNO

Knowledge of the dynamical behavior of correlations with no classical counterpart, like entanglement, nonlocal correlations and quantum discord, in open quantum systems is of primary interest because of the possibility to exploit these correlations for quantum information tasks. Here we review some of the most recent results on the dynamics of correlations in bipartite systems embedded in non-Markovian environments that, with their memory effects, influence in a relevant way the system dynamics and appear to be more fundamental than the Markovian ones for practical purposes. Firstly, we review the phenomenon of entanglement revivals in a two-qubit system for both independent environments and a common environment. We then consider the dynamics of quantum discord in non-Markovian dephasing channel and briefly discuss the occurrence of revivals of quantum correlations in classical environments.


2011 ◽  
Vol 11 (7&8) ◽  
pp. 541-562
Author(s):  
Indranil Chakrabarty ◽  
Subhashish Banerjee ◽  
Nana Siddharth

In this work, we study quantum correlations in mixed states. The states studied are modeled by a two-qubit system interacting with its environment via a quantum non demolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed. We make a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, on these states, generated by the above evolutions. We classify these evoluted states on basis of various dynamical parameters like bath squeezing parameter $r$, inter-qubit spacing $r_{12}$, temperature $T$ and time of system-bath evolution $t$. In this study, in addition we report the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation. Moreover we study the dynamics of quantum as well as classical correlation in presence of dissipative coherence.


Author(s):  
E.O. Kiktenko ◽  
A.K. Fedorov ◽  
V.I. Man’ko

AbstractTeleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.


2013 ◽  
Vol 15 (4) ◽  
pp. 043023 ◽  
Author(s):  
ZhiHao Ma ◽  
ZhiHua Chen ◽  
Felipe Fernandes Fanchini

Sign in / Sign up

Export Citation Format

Share Document