scholarly journals Investigating the energy distribution of the high-energy particles in the Crab nebula

2021 ◽  
Vol 21 (11) ◽  
pp. 286
Author(s):  
Lu Wen ◽  
Ke-Yao Wu ◽  
Huan Yu ◽  
Jun Fang

Abstract The Crab nebula is a prominent pulsar wind nebula detected in multiband observations ranging from radio to very high-energy γ-rays. Recently, γ-rays with energies above 1 PeV have been detected by the Large High Altitude Air Shower Observatory, and the energy of the most energetic particles in the nebula can be constrained. In this paper, we investigate the broadest spectral energy distribution of the Crab nebula and the energy distribution of the electrons emitting the multiwavelength nonthermal emission based on a one-zone time-dependent model. The nebula is powered by the pulsar, and high-energy electrons/positrons with a broken power-law spectrum are continually injected in the nebula as the pulsar spins down. Multiwavelength nonthermal emission is generated by the leptons through synchrotron radiation and inverse Compton scattering. Using appropriate parameters, the detected fluxes for the nebula can be well reproduced, especially for the γ-rays from 102 MeV to 1 PeV. The results show that the detected γ-rays can be produced by the leptons via the inverse Compton scattering, and the lower limit of the Lorentz factor of the most energetic leptons is ∼ 8.5 × 109. It can be concluded that there exist electrons/positrons with energies higher than 4.3 PeV in the Crab nebula.

2020 ◽  
Vol 496 (3) ◽  
pp. 3912-3928
Author(s):  
MAGIC Collaboration: V A Acciari ◽  
S Ansoldi ◽  
L A Antonelli ◽  
A Arbet Engels ◽  
A Babić ◽  
...  

ABSTRACT Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at νs ≥ 1017 Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the ground-based γ-ray telescope FACT during a high γ-ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) γ-rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE γ-ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The Γ index of the intrinsic spectrum in the VHE γ-ray band is 2.04 ± 0.12stat ± 0.15sys. We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz.


2010 ◽  
Vol 19 (06) ◽  
pp. 937-942
Author(s):  
MARIANA ORELLANA ◽  
GUSTAVO E. ROMERO

We investigate the spectral energy distribution (SED) of Centaurus A resulting from a steady compact acceleration region, located close to the central black hole, where both leptonic and hadronic relativistic populations arise. We present here results of such a model, where we have considered synchrotron radiation by primary electrons and protons, inverse Compton scattering, and gamma-ray emission originated by the inelastic hadronic interactions between relativistic protons and cold nuclei within the jets. Photo-meson production by relativistic hadrons were also taken into account, as well as the effects of secondary particles injected by all interactions. The internal and external absorption of gamma-rays is shown to be of great relevance to shape the observable SED, which was also recently constrained by the results of Fermi and HESS.


2020 ◽  
Vol 498 (4) ◽  
pp. 4901-4905
Author(s):  
Jun Fang ◽  
Lu Wen ◽  
Huan Yu ◽  
Songzhan Chen

ABSTRACT eHWC J2019+368 is one of the sources emitting γ-rays with energies higher than 100 TeV based on the recent measurement with the High Altitude Water Cherenkov Observatory (HAWC), and the origin is still in debate. The pulsar PSR J2021+3651 is spatially coincident with the TeV source. We investigate theoretically whether the multiband non-thermal emission of eHWC J2019+368 can originate from the pulsar wind nebula (PWN) G75.2+0.1 powered by PSR J2021+3651. In the model, the spin-down power of the pulsar is transferred to high-energy particles and magnetic field in the nebula. As the particles with an energy distribution of either a broken power law or a power law continually injected into the nebula, the multiband non-thermal emission is produced via synchrotron radiation and inverse Compton scattering. The spectral energy distribution of the nebula from the model with the reasonable parameters is generally consistent with the detected radio, X-ray, and TeV γ-ray fluxes. Our study supports that the PWN has the ability to produce the TeV γ-rays of eHWC J2019+368, and the most energetic particles in the nebula have energies up to about 0.4 PeV.


2018 ◽  
Vol 616 ◽  
pp. A35 ◽  
Author(s):  
A. Ritacco ◽  
J. F. Macías-Pérez ◽  
N. Ponthieu ◽  
R. Adam ◽  
P. Ade ◽  
...  

The Crab nebula is a supernova remnant exhibiting a highly polarized synchrotron radiation at radio and millimetre wavelengths. It is the brightest source in the microwave sky with an extension of 7 by 5 arcmin, and is commonly used as a standard candle for any experiment which aims to measure the polarization of the sky. Though its spectral energy distribution has been well characterized in total intensity, polarization data are still lacking at millimetre wavelengths. We report in this paper high resolution observations (18′′ FWHM) of the Crab nebula in total intensity and linear polarization at 150 GHz with the NIKA camera. NIKA, operated at the IRAM 30 m telescope from 2012 to 2015, is a camera made of Lumped Element Kinetic Inductance Detectors (LEKIDs) observing the sky at 150 and 260 GHz. From these observations we are able to reconstruct the spatial distribution of the polarization degree and angle of the Crab nebula, which is found to be compatible with previous observations at lower and higher frequencies. Averaging across the source and using other existing data sets we find that the Crab nebula polarization angle is consistent with being constant over a wide range of frequencies with a value of − 87.7° ± 0.3 in Galactic coordinates. We also present the first estimation of the Crab nebula spectral energy distribution polarized flux in a wide frequency range: 30–353 GHz. Assuming a single power law emission model we find that the polarization spectral index βpol = – 0.347 ± 0.026 is compatible with the intensity spectral index β = – 0.323 ± 0.001.


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


1996 ◽  
Vol 160 ◽  
pp. 225-226
Author(s):  
B. Zhang ◽  
G.J. Qiao ◽  
W.P. Lin ◽  
J.L. Han

AbstractThere are three mechanisms to cause pulsar inner gap breakdown: the inverse Compton scattering (ICS) of the high energy particles off the thermal-peak photons, off the resonant-frequency photons and the curvature radiation (CR). The pulsar mode-changing phenomenon can be interpreted as a switching effect between theresonant ICS sparking modeand thethermal ICS sparking mode.


2019 ◽  
Vol 627 ◽  
pp. A72 ◽  
Author(s):  
G. Ghisellini ◽  
M. Perri ◽  
L. Costamante ◽  
G. Tagliaferri ◽  
T. Sbarrato ◽  
...  

We observed three blazars at z >  2 with the NuSTAR satellite. These were detected in the γ-rays by Fermi/LAT and in the soft X-rays, but have not yet been observed above 10 keV. The flux and slope of their X-ray continuum, together with Fermi/LAT data allows us to estimate their total electromagnetic output and peak frequency. For some of them we were able to study the source in different states, and investigate the main cause of the different observed spectral energy distribution. We then collected all blazars at redshifts greater than 2 observed by NuSTAR, and confirm that these hard and luminous X-ray blazars are among the most powerful persistent sources in the Universe. We confirm the relation between the jet power and the disk luminosity, extending it at the high-energy end.


1994 ◽  
Vol 159 ◽  
pp. 29-32
Author(s):  
R. Schlickeiser ◽  
C. D. Dermer

We demonstrate that the prevalence of superluminal sources in the sample of γ-ray blazars and the peak of their luminosity spectra at γ-ray energies can be readily explained if the γ-rays result from the inverse Compton scattering of the accretion disk radiation by relativistic electrons in outflowing plasam jets. Compton scattering of external radiation by nonthermal particles in blazar jets is dominated by accretion disk photons rather than scattered radiation to distances of ∼ 0.01–0.1 pc from the central engine for standard parameters. The size of the γ-ray photosphere and the spectral evolution of the relativistic electron spectra constrain the location of the acceleration and emission sites in these objects.


Sign in / Sign up

Export Citation Format

Share Document