Monte-Carlo-based uncertainty propagation with hierarchical models—a case study in dynamic torque

Metrologia ◽  
2018 ◽  
Vol 55 (2) ◽  
pp. S70-S85 ◽  
Author(s):  
Leonard Klaus ◽  
Sascha Eichstädt
2021 ◽  
Vol 25 (1) ◽  
pp. 193-216
Author(s):  
Jairo Arturo Torres-Matallana ◽  
Ulrich Leopold ◽  
Gerard B. M. Heuvelink

Abstract. Uncertainty is often ignored in urban water systems modelling. Commercial software used in engineering practice often ignores the uncertainties of input variables and their propagation because of a lack of user-friendly implementations. This can have serious consequences, such as the wrong dimensioning of urban drainage systems (UDSs) and the inaccurate estimation of pollution released to the environment. This paper introduces an uncertainty analysis in urban drainage modelling, built on existing methods and applied to a case study in the Haute-Sûre catchment in Luxembourg. The case study makes use of the EmiStatR model which simulates the volume and substance flows in UDS using simplified representations of the drainage system and processes. A Monte Carlo uncertainty propagation analysis showed that uncertainties in chemical oxygen demand (COD) and ammonium (NH4) loads and concentrations can be large and have a high temporal variability. Furthermore, a stochastic sensitivity analysis that assesses the uncertainty contributions of input variables to the model output response showed that precipitation has the largest contribution to output uncertainty related with water quantity variables, such as volume in the chamber, overflow volume, and flow. Regarding the water quality variables, the input variable related to COD in wastewater has an important contribution to the uncertainty for the COD load (66 %) and COD concentration (62 %). Similarly, the input variable related to NH4 in wastewater plays an important role in the contribution of total uncertainty for the NH4 load (34 %) and NH4 concentration (35 %). The Monte Carlo (MC) simulation procedure used to propagate input uncertainty showed that, among the water quantity output variables, the overflow flow is the most uncertain output variable, with a coefficient of variation (cv) of 1.59. Among water quality variables, the annual average spill COD concentration and the average spill NH4 concentration were the most uncertain model outputs (coefficients of variation of 0.99 and 0.82, respectively). Also, low standard errors for the coefficient of variation were obtained for all seven outputs. These were never greater than 0.05, which indicates that the selected MC replication size (1500 simulations) was sufficient. We also evaluated how the uncertainty propagation can more comprehensively explain the impact of water quality indicators for the receiving river. While the mean model water quality outputs for COD and NH4 concentrations were slightly above the threshold, the 0.95 quantile was 2.7 times above the mean value for COD concentration and 2.4 times above the mean value for NH4. This implies that there is a considerable probability that these concentrations in the spilled combined sewer overflow (CSO) are substantially larger than the threshold. However, COD and NH4 concentration levels of the river water will likely stay below the water quality threshold, due to rapid dilution after CSO spill enters the river.


2019 ◽  
Vol 15 (9) ◽  
Author(s):  
Vinicius Francisco Rofatto ◽  
Marcelo Tomio Matsuoka ◽  
Ivandro Klein ◽  
Maurício Roberto Veronez

Author(s):  
Bernardino Tirri ◽  
Gloria Mazzone ◽  
Alistar Ottochian ◽  
Jerôme Gomar ◽  
Umberto Raucci ◽  
...  
Keyword(s):  

2020 ◽  
Vol 153 (18) ◽  
pp. 184111
Author(s):  
Anouar Benali ◽  
Kevin Gasperich ◽  
Kenneth D. Jordan ◽  
Thomas Applencourt ◽  
Ye Luo ◽  
...  

2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saba Moeinizade ◽  
Ye Han ◽  
Hieu Pham ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractMultiple trait introgression is the process by which multiple desirable traits are converted from a donor to a recipient cultivar through backcrossing and selfing. The goal of this procedure is to recover all the attributes of the recipient cultivar, with the addition of the specified desirable traits. A crucial step in this process is the selection of parents to form new crosses. In this study, we propose a new selection approach that estimates the genetic distribution of the progeny of backcrosses after multiple generations using information of recombination events. Our objective is to select the most promising individuals for further backcrossing or selfing. To demonstrate the effectiveness of the proposed method, a case study has been conducted using maize data where our method is compared with state-of-the-art approaches. Simulation results suggest that the proposed method, look-ahead Monte Carlo, achieves higher probability of success than existing approaches. Our proposed selection method can assist breeders to efficiently design trait introgression projects.


Author(s):  
Laura Cappelle

Jean-Christophe Maillot is one of the few French choreographers to have achieved international recognition in the field of contemporary ballet in recent years. This chapter explores his fraught early development as a classically trained artist in the midst of a contemporary dance boom in France and his subsequent career at the helm of Les Ballets de Monte-Carlo. There, he found the practical support and creative freedom to build a large repertoire, both narrative and abstract, from 1993 onward. Finally, Maillot’s process and style are explored through a case study: The Taming of the Shrew, a ballet he created for Moscow’s Bolshoi Ballet in 2014. On the basis of studio-based sociological observations and interviews conducted during the rehearsals, this creation is envisioned as an example of the hybrid nature of new works in ballet today and the influence of the environment in which they are made.


Sign in / Sign up

Export Citation Format

Share Document