scholarly journals Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support

2018 ◽  
Vol 1109 ◽  
pp. 012015 ◽  
Author(s):  
Ömer Üstündag ◽  
Vjaceslav Avilov ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier
Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 594 ◽  
Author(s):  
Ömer Üstündağ ◽  
Vjaceslav Avilov ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

Hybrid laser-arc welding offers many advantages, such as deep penetration, good gap bridge-ability, and low distortion due to reduced heat input. The filler wire which is supplied to the process is used to influence the microstructure and mechanical properties of the weld seam. A typical problem in deep penetration high-power laser beam welding with filler wire and hybrid laser-arc welding is an insufficient mixing of filler material in the weld pool, leading to a non-uniform element distribution in the seam. In this study, oscillating magnetic fields were used to form a non-conservative component of the Lorentz force in the weld pool to improve the element distribution over the entire thickness of the material. Full penetration hybrid laser-arc welds were performed on 20-mm-thick S355J2 steel plates with a nickel-based wire for different arrangements of the oscillating magnetic field. The Energy-dispersive X-ray spectroscopy (EDS) data for the distribution of two tracing elements (Ni and Cr) were used to analyze the homogeneity of dilution of the filler wire. With a 30° turn of the magnetic field to the welding direction, a radical improvement in the filler material distribution was demonstrated. This would lead to an improvement of the mechanical properties with the use of a suitable filler wire.


Procedia CIRP ◽  
2018 ◽  
Vol 74 ◽  
pp. 757-760 ◽  
Author(s):  
Ömer Üstündağ ◽  
André Fritzsche ◽  
Vjaceslav Avilov ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

2018 ◽  
Vol 62 (4) ◽  
pp. 767-774 ◽  
Author(s):  
Ömer Üstündağ ◽  
André Fritzsche ◽  
Vjaceslav Avilov ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1510
Author(s):  
Leilei Wang ◽  
Yanqiu Zhao ◽  
Yue Li ◽  
Xiaohong Zhan

Hybrid laser arc welding (HLAW) features advantages such as higher welding speed and gap tolerance as well as smaller welding deformation and heat-affected zone than arc welding. Porosity in hybrid laser arc weld due to keyhole fluctuation tends to be the initial source of crack propagation, which will significantly diminish the weld performance. A high-speed imaging technique was adopted to record and analyze the droplet transfer and keyhole fluctuation behavior during hybrid laser arc welding of aluminum alloys. A heat transfer and fluid flow model of HLAW was established and validated for a perspective of the evolution process of droplet transfer and keyhole fluctuation. The relationship between keyhole fluctuation and weld porosity was also revealed. During the droplet transfer stage, liquid metal on the top surface of the weld pool flows toward the keyhole originated by globular transfer, and the keyhole fluctuates and decreases significantly, which has a higher tendency to form a bubble in the weld pool. The bubble evolves into porosity once trapped in the mush-zone near the trailing edge of the weld pool. Therefore, globular transfer during HLAW is the principal origin of keyhole fluctuation and weld porosity. Welding current has a significant influence on keyhole fluctuation and weld porosity rate. Droplet transfer frequency, keyhole fluctuation, and porosity rate increase with higher welding current under the globular transfer mode. The porosity rate shows a nearly positive correlation with the standard deviation of keyhole fluctuation.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 703
Author(s):  
Junnan Qiao ◽  
Chuansong Wu ◽  
Yongfeng Li

The acoustic radiation force driving the plasma jet and the ultrasound reflection at the plasma arc-weld pool interface are considered to modify the formulas of gas shear stress and plasma arc pressure on the anode surface in ultrasonic-assisted plasma arc welding (U-PAW). A transient model taking into account the dynamic changes of heat flux, gas shear stress, and arc pressure on the keyhole wall is developed. The keyhole and weld pool behaviors are numerically simulated to predict the heat transfer and fluid flow in the weld pool and dynamic keyhole evolution process. The model is experimentally validated. The simulation results show that the acoustic radiation force increases the plasma arc velocity, and then increases both the plasma arc pressure and the gas shear stress on the keyhole wall, so that the keyholing capability is enhanced in U-PAW.


2021 ◽  
pp. 110029
Author(s):  
Zhenglin DU ◽  
Xianchong SUN ◽  
Fern Lan NG ◽  
Youxiang CHEW ◽  
Chaolin TAN ◽  
...  

2006 ◽  
Vol 22 (02) ◽  
pp. 105-109
Author(s):  
S.M. Kelly ◽  
R.P. Martukanitz ◽  
P. Michaleris ◽  
M. Bugarewicz ◽  
T. D. Huang ◽  
...  

As thinner members are used in marine construction, the use of conventional joining techniques results in significant angular and buckling distortion due to the inherent high heat input with these processes. Several low heat input alternatives, including laser beam, gas metal arc, and hybrid laser arc welding, are explored. The paper focuses on process development, real time distortion measurements, and implementation of these processes.


Sign in / Sign up

Export Citation Format

Share Document