scholarly journals Immersed boundary conditions in global, flux-driven, gyrokinetic simulations

2018 ◽  
Vol 1125 ◽  
pp. 012006
Author(s):  
E. Caschera ◽  
G. Dif-Pradalier ◽  
Ph. Ghendrih ◽  
V. Grandgirard ◽  
Y. Asahi ◽  
...  
2011 ◽  
Vol 133 (2) ◽  
Author(s):  
M. Fazel Bakhsheshi ◽  
J. M. Floryan ◽  
P. N. Kaloni

A spectral method for solving the steady flow of a shear-thinning Ellis fluid is discussed for the case of a planar channel with corrugated boundaries. Polynomial approximations are employed for the velocity and viscosity distributions in the regions around singularities. The proposed algorithm employs a fixed computational domain with the physical domain of interest submerged inside the computational domain. The flow boundary conditions are imposed using the concept of immersed boundary conditions. The method, thus, eliminates the need for grid generation. The algorithm relies on Fourier expansions in the flow direction and Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm.


Author(s):  
Dolfred V. Fernandes ◽  
Sangmo Kang ◽  
Yong K. Suh

The bulk motion of an aqueous solution induced by the application of DC electric field is studied numerically. The physical model consists of a micro-cavity with two completely polarizable cylindrical electrodes. The electric double layer (EDL) model coupled with Navier-Stokes equations governing the electroosmotic flow has been described. The Nernst-Planck model uses two extra equations for the prediction of ion concentration. We employed IB (immersed boundary) technique for the implementation of boundary conditions and semi-implicit fractional-step method for solving the governing equations. A new method is described for implementing concentration boundary conditions on the electrodes. The bench mark problems, driven cavity flow and flow over a cylnder were used for the validation of our present code. The numerical results are compared with the analytical results obtained using Gouy-Chapman-Stern model for the one dimensional case. For the two dimensional case the flow field and the ionic concentration distributions obtained shows that the electoosmotic effect is predominant in the thin region around the electrode.


2010 ◽  
Vol 98 (10-11) ◽  
pp. 618-627 ◽  
Author(s):  
M. Salinas-Vázquez ◽  
W. Vicente ◽  
C. González-Rodríguez ◽  
E. Barrios-Bonilla ◽  
A. Espinosa-Gayosso

2020 ◽  
Author(s):  
Junjie Wang ◽  
Xiangyu Gu ◽  
Jie Wu

Abstract This paper presents a robust sharp-interface immersed boundary method for simulating inviscid compressible flows over stationary and moving bodies. The flow field is governed by Euler equations, which are solved by using the open source library OpenFOAM. Discontinuities such as those introduced by shock waves are captured by using Kurganov and Tadmor divergence scheme. Wall-slip boundary conditions are enforced at the boundary of body through reconstructing flow variables at some ghost points. Their values are obtained indirectly by interpolating from their mirror points. A bilinear interpolation is employed to determine the variables at the mirror points from boundary conditions and flow conditions around the boundary. To validate the efficiency and accuracy of this method for simulation of high-speed inviscid compressible flows, four cases have been simulated as follows: supersonic flow over a 15 angle wedge, transonic flow past a stationary airfoil, a piston moving with supersonic velocity in a shock tube and a rigid circular cylinder lift-off from a flat surface triggered by a shock wave. Compared to the exact analytical solutions or the results in literature, good agreement can be achieved.


Author(s):  
К.А. Гадыльшина ◽  
Т.С. Хачкова ◽  
В.В. Лисица

Предложен алгоритм численного моделирования процессов химического взаимодействия флюида с породой в масштабе пор. Алгоритм основан на методе расщепления задачи по физическим процессам. Предполагается, что скорость течения флюида мала, а установление потока происходит мгновенно при малых изменениях геометрии порового пространства. Таким образом, поток флюида в поровом пространстве моделируется при помощи уравнения Стокса для стационарного течения жидкости. Перенос химически активного компонента описывается уравнением конвекциидиффузии с граничными условиями третьего рода. Граница порового пространства изменяется со временем и задается неявно функцией уровня. Для численного решения уравнения Стокса и уравнения конвекциидиффузии применяется метод конечных разностей с аппроксимацией краевого условия взаимодействия жидкой и твердой фазы на погруженной границе. A new algorithm for the numerical modeling of chemical fluid-rock interaction at the pore scale is proposed. The algorithm is based on splitting the problem into physical processes. It is assumed that the fluid rate is low and the fluid flow is stabilized almost instantly in the case of small changes in the pore space geometry. In the pore space, thus, the fluid flow is modeled using the Stokes equation for steady flows. The chemical reactant transport is described by the convection-diffusion equation with Robin boundary conditions at the fluid-rock interface. The pore space boundary changes with time and is implicitly given by a level-set function. We use finite-difference schemes with immersed boundary conditions to solve the Stokes and convection-diffusion equations.


Sign in / Sign up

Export Citation Format

Share Document