scholarly journals Hydrophilic properties of surface of nanostructured tantalum films and its oxynitride compounds

2019 ◽  
Vol 1281 ◽  
pp. 012061 ◽  
Author(s):  
A S Petrovskaya ◽  
V A Lapitskaya ◽  
G B Melnikova ◽  
T A Kuznetsova ◽  
S A Chizhik ◽  
...  
Keyword(s):  
2000 ◽  
Vol 614 ◽  
Author(s):  
D.B. Fenner ◽  
J. Hautala ◽  
L.P. Allen ◽  
J.A. Greer ◽  
W.J. Skinner ◽  
...  

ABSTRACTThin-film magnetic sensor and memory devices in future generations may benefit from a processing tool for final-step etching and smoothing of surfaces to nearly an atomic scale. Gas-cluster ion-beam (GCIB) systems make possible improved surface sputtering and processing for many types of materials. We propose application of GCIB processing as a key smoothing step in thin-film magnetic-materials technology, especially spin-valve GMR. Results of argon GCIB etching and smoothing of surfaces of alumina, silicon, permalloy and tantalum films are reported. No accumulating roughness or damage is observed. The distinct scratches and tracks seen in atomic-force microscopy of CMP-processed surfaces, are removed almost entirely by subsequent GCIB processing. The technique primarily reduces high spatial-frequency roughness and renders the topographic surface elevations more nearly gaussian (randomly distributed).


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1306 ◽  
Author(s):  
Hassan Moussa ◽  
Megan Logan ◽  
Wing Chan ◽  
Kingsley Wong ◽  
Zheng Rao ◽  
...  

The primary goal of this work was to investigate the resulting morphology of a mammalian cell deposited on three-dimensional nanocomposites constructed of tantalum and silicon oxide. Vero cells were used as a model. The nanocomposite materials contained comb structures with equal-width trenches and lines. High-resolution scanning electron microscopy and fluorescence microscopy were used to image the alignment and elongation of cells. Cells were sensitive to the trench widths, and their observed behavior could be separated into three different regimes corresponding to different spreading mechanism. Cells on fine structures (trench widths of 0.21 to 0.5 μm) formed bridges across trench openings. On larger trenches (from 1 to 10 μm), cells formed a conformal layer matching the surface topographical features. When the trenches were larger than 10 μm, the majority of cells spread like those on blanket tantalum films; however, a significant proportion adhered to the trench sidewalls or bottom corner junctions. Pseudopodia extending from the bulk of the cell were readily observed in this work and a minimum effective diameter of ~50 nm was determined for stable adhesion to a tantalum surface. This sized structure is consistent with the ability of pseudopodia to accommodate ~4–6 integrin molecules.


2006 ◽  
Vol 914 ◽  
Author(s):  
Kenichi Sekimoto ◽  
Taishi Furukawa ◽  
Noriaki Oshima ◽  
Ken-ichi Tada ◽  
Tetsu Yamakawa

AbstractA novel tantalum precursor, bis(ethylcyclopentadienyl)hydridocarbonyltantalum (Ta(EtCp)2(CO)H EtCp:ethylcyclopentadienyl), for chemical vapor deposition (CVD) and atomic layer deposition (ALD) was synthesized. The molecular structure of this precursor was determined by 1H and 13C NMR, IR, ICP-AES and elemental analysis. This precursor is liquid at room temperature, and its vapor pressure and decomposition temperature indicates that this precursor is suitable for CVD and ALD process.The composition analysis of metal tantalum films deposited by thermal CVD revealed that the concentration of carbon was larger than tantalum. On the other hand, an argon plasma CVD technique reduced the carbon concentration drastically.


2003 ◽  
Vol 375 (7) ◽  
pp. 902-905 ◽  
Author(s):  
M. Zier ◽  
S. Oswald ◽  
R. Reiche ◽  
K. Wetzig

1971 ◽  
Vol 19 (10) ◽  
pp. 375-378 ◽  
Author(s):  
Neil Waterhouse
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document