scholarly journals Optimization Strategy of Tax Planning System in the Context of Artificial Intelligence and Big Data

2019 ◽  
Vol 1345 ◽  
pp. 052006
Author(s):  
JingJing Shan
2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


2018 ◽  
Vol 20 (2) ◽  
pp. 1-5
Author(s):  
Sang-ho Jeon ◽  
Sung-yeul Yang ◽  
In-beom Shin ◽  
Dae-mok Son ◽  
Tae-han Kwon ◽  
...  

Author(s):  
Manish Kumar Tripathi ◽  
Abhigyan Nath ◽  
Tej P. Singh ◽  
A. S. Ethayathulla ◽  
Punit Kaur

Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 20
Author(s):  
Reynaldo Villarreal-González ◽  
Antonio J. Acosta-Hoyos ◽  
Jaime A. Garzon-Ochoa ◽  
Nataly J. Galán-Freyle ◽  
Paola Amar-Sepúlveda ◽  
...  

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.


Author(s):  
Marina Johnson ◽  
Rashmi Jain ◽  
Peggy Brennan-Tonetta ◽  
Ethne Swartz ◽  
Deborah Silver ◽  
...  

Urban Studies ◽  
2021 ◽  
pp. 004209802110140
Author(s):  
Sarah Barns

This commentary interrogates what it means for routine urban behaviours to now be replicating themselves computationally. The emergence of autonomous or artificial intelligence points to the powerful role of big data in the city, as increasingly powerful computational models are now capable of replicating and reproducing existing spatial patterns and activities. I discuss these emergent urban systems of learned or trained intelligence as being at once radical and routine. Just as the material and behavioural conditions that give rise to urban big data demand attention, so do the generative design principles of data-driven models of urban behaviour, as they are increasingly put to use in the production of replicable, autonomous urban futures.


Sign in / Sign up

Export Citation Format

Share Document