scholarly journals The differential-q-difference 2D Toda equation: bilinear form and soliton solutions

2019 ◽  
Vol 1391 ◽  
pp. 012122
Author(s):  
B.B. Kutum ◽  
K.R. Yesmakhanova ◽  
G.N. Shaikhova
2012 ◽  
Vol 26 (15) ◽  
pp. 1250057
Author(s):  
HE LI ◽  
XIANG-HUA MENG ◽  
BO TIAN

With the coupling of a scalar field, a generalization of the nonlinear Klein–Gordon equation which arises in the relativistic quantum mechanics and field theory, i.e., the coupled nonlinear Klein–Gordon equations, is investigated via the Hirota method. With the truncated Painlevé expansion at the constant level term with two singular manifolds, the coupled nonlinear Klein–Gordon equations are transformed to a bilinear form. Starting from the bilinear form, with symbolic computation, we obtain the N-soliton solutions for the coupled nonlinear Klein–Gordon equations.


2017 ◽  
Vol 72 (8) ◽  
pp. 703-709
Author(s):  
Chuanzhong Li ◽  
Anni Meng

AbstractIn this paper, we construct a full-discrete integrable difference equation which is a full-discretisation of the generalised q-Toda equation. Meanwhile its soliton solutions are constructed to show its integrable property. Further the Lax pairs of an extended generalised full-discrete q-Toda hierarchy are also constructed. To show the integrability, the bi-Hamiltonian structure and tau symmetry of the extended full-discrete generalised q-Toda hierarchy are given.


2020 ◽  
pp. 2150057
Author(s):  
Xin-Mei Zhou ◽  
Shou-Fu Tian ◽  
Ling-Di Zhang ◽  
Tian-Tian Zhang

In this work, we investigate the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (gBK) equation. Based on its bilinear form, the [Formula: see text]th-order breather solutions of the gBK equation are successful given by taking appropriate parameters. Furthermore, the [Formula: see text]th-order lump solutions of the gBK equation are obtained via the long-wave limit method. In addition, the semi-rational solutions are generated to reveal the interaction between lump solutions, soliton solutions, and breather solutions.


2009 ◽  
Vol 23 (25) ◽  
pp. 5003-5015 ◽  
Author(s):  
XING LÜ ◽  
TAO GENG ◽  
CHENG ZHANG ◽  
HONG-WU ZHU ◽  
XIANG-HUA MENG ◽  
...  

In this paper, the (2+1)-dimensional Sawada-Kotera equation is studied by the truncated Painlevé expansion and Hirota bilinear method. Firstly, based on the truncation of the Painlevé series we obtain two distinct transformations which can transform the (2+1)-dimensional Sawada-Kotera equation into two bilinear equations of different forms (which are shown to be equivalent). Then employing Hirota bilinear method, we derive the analytic one-, two- and three-soliton solutions for the bilinear equations via symbolic computation. A formula which denotes the N-soliton solution is given simultaneously. At last, the evolutions and interactions of the multi-soliton solutions are graphically discussed as well. It is worthy to be noted that the truncated Painlevé expansion provides a useful dependent variable transformation which transforms a partial differential equation into its bilinear form and by means of the bilinear form, further study of the original partial differential equation can be conducted.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Ömer Akin ◽  
Ersin Özuğurlu

Hirota's bilinear form for the Complex Modified Korteweg-de Vries-II equation (CMKdV-II) is derived. We obtain one- and two-soliton solutions analytically for the CMKdV-II. One-soliton solution of the CMKdV-II equation is obtained by using finite difference method by implementing an iterative method.


2022 ◽  
Author(s):  
Ren Bo ◽  
Shi Kai-Zhong ◽  
Shou-Feng Shen ◽  
Wang Guo-Fang ◽  
Peng Jun-Da ◽  
...  

Abstract In this paper, we investigate the third-order nonlinear Schr\"{o}dinger equation which is used to describe the propagation of ultrashort pulses in the subpicosecond or femtosecond regime. Based on the independent transformation, the bilinear form of the third-order NLSE is constructed. The multiple soliton solutions are constructed by solving the bilinear form. The multi-order rogue waves and interaction between one-soliton and first-order rogue wave are obtained by the long wave limit in multi-solitons. The dynamics of the first-order rogue wave, second-order rogue wave and interaction between one-soliton and first-order rogue wave are presented by selecting the appropriate parameters. In particular parameters, the positions and the maximum of amplitude of rogue wave can be confirmed by the detail calculations.PACS numbers: 02.30.Ik, 05.45.Yv.


2017 ◽  
Vol 31 (22) ◽  
pp. 1750126 ◽  
Author(s):  
Qian-Min Huang ◽  
Yi-Tian Gao

Under investigation in this letter is a variable-coefficient (3[Formula: see text]+[Formula: see text]1)-dimensional generalized shallow water wave equation. Bilinear form and Bäcklund transformation are obtained. One-, two- and three-soliton solutions are derived via the Hirota bilinear method. Interaction and propagation of the solitons are discussed graphically. Stability of the solitons is studied numerically. Soliton amplitude is determined by the spectral parameters. Soliton velocity is not only related to the spectral parameters, but also to the variable coefficients. Phase shifts are the only difference between the two-soliton solutions and the superposition of the two relevant one-soliton solutions. Numerical investigation on the stability of the solitons indicates that the solitons could resist the disturbance of small perturbations and propagate steadily.


Author(s):  
Hanlin Chen ◽  
Zhenhui Xu ◽  
Zhengde Dai

Purpose – The purpose of this paper is to reveal dynamical behavior of nonlinear wave by searching for the new breather soliton and cross two-soliton solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation. Design/methodology/approach – The authors apply bilinear form and extended homoclinic test approach to the fifth-order CDG equation. Findings – In this paper, by using bilinear form and extended homoclinic test approach, the authors obtain new breather soliton and cross two-soliton solutions of the fifth-order CDG equation. It is shown that the extended homoclinic test approach, with the help of symbolic computation, provides an effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Research limitations/implications – The research manifests that the structures of the solution to nonlinear equations are diversified and complicated. Originality/value – The methods used in this paper can be widely applied to the research of spatial and temporal characteristics of nonlinear equations in physics and engineering technology. These methods are also conducive for people to know objective laws and grasp the essential features of the development of the world.


2016 ◽  
Vol 30 (24) ◽  
pp. 1650309
Author(s):  
Lin Wang ◽  
Qixing Qu ◽  
Liangjuan Qin

In this paper, two (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear evolution equations (NLEEs) are under investigation by employing the Hirota’s method and symbolic computation. We derive the bilinear form and bilinear Bäcklund transformation (BT) for the two NLEEs. Based on the bilinear form, we obtain the multi-soliton solutions for them. Furthermore, multi-soliton solutions in terms of Wronskian determinant for the first NLEE are constructed, whose validity is verified through direct substitution into the bilinear equations.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750157 ◽  
Author(s):  
Zhonglong Zhao ◽  
Yong Chen ◽  
Bo Han

The lump soliton solutions of a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation are obtained by making use of its bilinear form. We discuss the conditions to guarantee the analyticity, positiveness and localization of lump solutions. The solutions of interaction between a lump and a stripe are presented. It is proved that the interaction between the two solitary waves is non-elastic. The three-wave method is employed to investigate the periodic lump solutions. Figures are presented to illustrate the dynamical features of these solutions.


Sign in / Sign up

Export Citation Format

Share Document