scholarly journals Mechanical Reliability Analysis and Optimization Design Method Based on Evidence Theory

2020 ◽  
Vol 1533 ◽  
pp. 042052
Author(s):  
Xiaoxing Yang
2019 ◽  
Vol 37 (1) ◽  
pp. 345-367
Author(s):  
Hui Lü ◽  
Kun Yang ◽  
Wen-bin Shangguan ◽  
Hui Yin ◽  
DJ Yu

Purpose The purpose of this paper is to propose a unified optimization design method and apply it to handle the brake squeal instability involving various uncertainties in a unified framework. Design/methodology/approach Fuzzy random variables are taken as equivalent variables of conventional uncertain variables, and a unified response analysis method is first derived based on level-cut technique, Taylor expansion and central difference scheme. Next, a unified reliability analysis method is developed by integrating the unified response analysis and fuzzy possibility theory. Finally, based on the unified reliability analysis method, a unified reliability-based optimization model is established, which is capable of optimizing uncertain responses in a unified way for different uncertainty cases. Findings The proposed method is extended to perform squeal instability analysis and optimization involving various uncertainties. Numerical examples under eight uncertainty cases are provided and the results demonstrate the effectiveness of the proposed method. Originality/value Most of the existing methods of uncertainty analysis and optimization are merely effective in tackling one uncertainty case. The proposed method is able to handle the uncertain problems involving various types of uncertainties in a unified way.


2012 ◽  
Vol 538-541 ◽  
pp. 851-857
Author(s):  
Ye Lin ◽  
Wei Min Cui ◽  
Bi Feng Song

Firstly, methodology of valve spring’s static strength and fatigue strength reliability analysis is built up, and detailed computational formulas to derive distributions of the stress and strength are described. Secondly, to make full use of the material characteristic and consider reliability of the mechanism part, taking the spring’s mass as the objective function and based on spring’s traditional and reliability constraints, mathematic model of reliability optimization design of valve spring is established using mechanical reliability design method and mechanical optimization design method. At last, the proposed method is applied to a practical spring design example by integrating optimization tools with the optimization model. The comparison of reliability optimization design results and traditional optimization design results shows that the reliability optimization method is practical and reliable; its design results can satisfy all design requirements with smaller mass.


2021 ◽  
Vol 69 (5) ◽  
pp. 149
Author(s):  
Li Yang ◽  
Chuang Chen

The mechanical reliability design method is a common method, and it is the most direct and effective method to carry out the mechanical reliability design at present. The reliability optimization design is an effective optimization design method which is developed in combination with the reliability design theory on the basis of the conventional optimization design. Taking the antifriction bearing as an example, this paper systematically expounds all kinds of mechanical reliability design methods. Through comprehensive analysis of various factors that affect the reliability of colliery machine, the index system of colliery machine reliability evaluation is established. Because of the complexity and diversity of the use of colliery machine in the evaluation system, and the fuzziness of human thinking, it is difficult to give the deterministic evaluation information in numerical form, so this paper also analyzes the design method of colliery mechanical reliability, and puts forward an interval fuzzy evaluation method for colliery mechanical reliability evaluation to avoid overload operation of colliery machine and ensure safety production and safety of workers. The simulation results show that the inherent law of reliability is effectively characterized by this method, and it provides a evidence for security produce and scientific decision-making of colliery mechine.


2005 ◽  
Vol 42 (5) ◽  
pp. 1375-1375 ◽  
Author(s):  
Shinkyu Jeong ◽  
Mitsuhiro Murayama ◽  
Kazuomi Yamamoto

2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.


Sign in / Sign up

Export Citation Format

Share Document