scholarly journals Identification of Gas Flow Regimes in Adiabatic Microtubes by means of Wall Temperature Measurements

2020 ◽  
Vol 1599 ◽  
pp. 012019
Author(s):  
R Kashiwagi ◽  
C Hong ◽  
Y Asako ◽  
G L Morini ◽  
M Faghri
2012 ◽  
Vol 17 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Krzysztof Strzecha ◽  
Tomasz Koszmider ◽  
Damian Zarębski ◽  
Wojciech Łobodziński

Abstract In this paper, a case-study of the auto-focus algorithm for correcting image distortions caused by gas flow in high-temperature measurements of surface phenomena is presented. This article shows results of proposed algorithm and methods for increasing its accuracy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenyi Su ◽  
Xingqi Xu ◽  
Jinghua Huang ◽  
Bailiang Pan

Abstract Considering the thermodynamical fluid mechanics in the gain medium and laser kinetic processes, a three-dimensional theoretical model of an exciplex-pumped Cs vapor laser with longitudinal and transverse gas flow is established. The slope efficiency of laser calculated by the model shows good agreement with the experimental data. The comprehensive three-dimensional distribution of temperature and particle density of Cs is depicted. The influence of pump intensity, wall temperature, and fluid velocity on the laser output performance is also simulated and analyzed in detail, suggesting that a higher wall temperature can guarantee a higher output laser power while causing a more significant heat accumulation in the cell. Compared with longitudinal gas flow, the transverse flow can improve the output laser power by effectively removing the generated heat accumulation and alleviating the temperature gradient in the cell.


Author(s):  
Patrick Nau ◽  
Zhiyao Yin ◽  
Oliver Lammel ◽  
Wolfgang Meier

Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.


Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050301
Author(s):  
Shaoyi Suo ◽  
Linsong Jiang ◽  
Maozhao Xie

The reversible elementary reaction mechanism of six components and seven steps of H2/O2 are applied by using a CFD-DSMC coupling iteration method to study the impact of boundary on flow, heat transfer and chemical reaction in a microtube. The microtube consists of a converging section and a straight section, which represents the gap on the contact surface of the pellets in porous media. It shows that after coupling, with the designed conditions in this paper, the influence of wall temperature is more obvious than that of wall slip velocity on the coupling results from the analysis of chemical reaction, yet the velocity field in the boundary layer is more affected by the wall slip velocity. In addition, the velocity in the central region of the flow decreases while the concentration of reaction products increases after coupling, due to the increasing of the velocity in the boundary layer and the influence of wall temperature, respectively. By the coupling of CFD-DSMC methods, more details and influence of the boundary can be considered, and the computational efficiency is higher than that of the single microscopic method.


Sign in / Sign up

Export Citation Format

Share Document