scholarly journals Tidal forces near a black hole with scalar hairy

2020 ◽  
Vol 1690 ◽  
pp. 012181
Author(s):  
E L Andre ◽  
I M Potashov ◽  
Ju V Tchemarina ◽  
A N Tsirulev
Keyword(s):  
2016 ◽  
Vol 12 (S324) ◽  
pp. 93-98
Author(s):  
S. Bradley Cenko

AbstractI present an overview of observational efforts across the electromagnetic spectrum to identify and study tidal disruption flares (TDFs), when a star wanders too close to a super-massive black hole and is torn apart by tidal forces. In particular I will focus on four unexpected surprises that challenge the most basic analytic picture of these events: 1) large inferred radii for the optical/UV-emitting material; 2) the ubiquity of outflows, detected at radio, X-ray, and UV wavelengths, ranging from speeds of 100 km/s to near the speed of light; 3) the peculiar atomic abundances observed in the UV and optical spectra of these objects; and, 4) the preference for these events to occur in post-starburst galaxies.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041014
Author(s):  
Haroldo C. D. Lima ◽  
Luís C. B. Crispino

Tidal forces produced by black holes are an important result of General Relativity related to the spacetime curvature tensor. Among the astrophysical implications of tidal forces, the tidal disruption events stand out. We analyze the tidal forces in the spacetime of an electrically charged Hayward regular black hole, obtaining the components of the tidal tensor and the geodesic deviation equation. We find that the radial and angular tidal forces may vanish and change sign unlike in the Schwarzschild spacetime. We note that tidal forces are finite at the origin of the radial coordinate in this regular black hole spacetime. We obtain the geodesic deviation vector for a body constituted of dust infalling towards the black hole with two different initial conditions.


Author(s):  
M. Umair Shahzad ◽  
Abdul Jawad
Keyword(s):  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
V. P. Vandeev ◽  
A. N. Semenova

AbstractThe article considers tidal forces in the vicinity of the Kottler black hole. We find a solution of the geodesic deviation equation for radially falling bodies, which is determined by elliptic integrals. And also the asymptotic behavior of all spatial geodesic deviation vector components were found. We demonstrate that the radial component of the tidal force changes sign outside the single event horizon for any negative values of the cosmological constant, in contrast to the Schwarzschild black hole, where all the components of the tidal force are sign-constant. We also find the similarity between the Kottler black hole and the Reissner–Nordström black hole, because we indicate the value of the cosmological constant, which ensures the existence of two horizons of the black hole, between which the angular components of the tidal force change sign. It was possible to detect non-analytical behavior of geodesic deviation vector components in anti-de Sitter spacetime and to describe it locally.


Author(s):  
Katherine Blundell

‘Falling into a black hole … considers what happens near to a black hole and how close is too close to avoid an object being pulled into the black hole. Gravitational redshift arises where spacetime is stretched out or curved by the effect of a black hole and time dilation is the effect of time ‘running more slowly’ moving closer to a black hole. These effects are larger if the black hole mass is larger, and also become more extreme the closer you get to the event horizon. The effect of spin and spin direction on how close particles may encounter the black hole, dynamic spacetime, tidal forces, and particle orbits are also considered.


2020 ◽  
Vol 639 ◽  
pp. A100 ◽  
Author(s):  
Jari J. E. Kajava ◽  
Margherita Giustini ◽  
Richard D. Saxton ◽  
Giovanni Miniutti

Stars that pass too close to a super-massive black hole may be disrupted by strong tidal forces. OGLE16aaa is one such tidal disruption event (TDE) which rapidly brightened and peaked in the optical/UV bands in early 2016 and subsequently decayed over the rest of the year. OGLE16aaa was detected in an XMM-Newton X-ray observation on June 9, 2016 with a flux slightly below the Swift/XRT upper limits obtained during the optical light curve peak. Between June 16–21, 2016, Swift/XRT also detected OGLE16aaa and based on the stacked spectrum, we could infer that the X-ray luminosity had jumped up by more than a factor of ten in just one week. No brightening signal was seen in the simultaneous optical/UV data to cause the X-ray luminosity to exceed the optical/UV one. A further XMM-Newton observation on November 30, 2016 showed that almost a year after the optical/UV peak, the X-ray emission was still at an elevated level, while the optical/UV flux decay had already leveled off to values comparable to those of the host galaxy. In all X-ray observations, the spectra were nicely modeled with a 50–70 eV thermal component with no intrinsic absorption, with a weak X-ray tail seen only in the November 30 XMM-Newton observation. The late-time X-ray behavior of OGLE16aaa strongly resembles the tidal disruption events ASASSN-15oi and AT2019azh. We were able to pinpoint the time delay between the initial optical TDE onset and the X-ray brightening to 182 ± 5 days, which may possibly represent the timescale between the initial circularization of the disrupted star around the super-massive black hole and the subsequent delayed accretion. Alternatively, the delayed X-ray brightening could be related to a rapid clearing of a thick envelope that covers the central X-ray engine during the first six months.


2012 ◽  
Vol 21 (11) ◽  
pp. 1241003 ◽  
Author(s):  
TIMOTHY J. HOLLOWOOD ◽  
GRAHAM M. SHORE

Gravitational tidal forces acting on the virtual e+e- cloud surrounding a photon endow spacetime with a nontrivial refractive index. This has remarkable properties unique to gravitational theories including superluminal low-frequency propagation, in apparent violation of causality, and amplification of the renormalized photon field, in apparent violation of unitarity. Using the geometry of null congruences and the Penrose limit, we illustrate these phenomena and their resolution by tracing the history of a photon as it falls into the near-singularity region of a black hole.


2001 ◽  
Vol 10 (04) ◽  
pp. 529-538 ◽  
Author(s):  
K. K. NANDI ◽  
T. B. NAYAK ◽  
A. BHADRA ◽  
P. M. ALSING

We investigate here the behavior of a few spherically symmetric static acclaimed black hole solutions in respect of tidal forces in the geodesic frame. It turns out that the forces diverge on the horizon of cold black holes (CBH) while for ordinary ones, they do not. It is pointed out that Kruskal-like extensions do not render the CBH metrics nonsingular. We present a CBH that is available in the Brans–Dicke theory for which the tidal forces do not diverge on the horizon and in that sense it is a better one.


Author(s):  
Clément Bonnerot ◽  
Wenbin Lu ◽  
Philip F Hopkins

Abstract When a star comes too close to a supermassive black hole, it gets torn apart by strong tidal forces in a tidal disruption event, or TDE. Half of the elongated stream of debris comes back to the stellar pericenter where relativistic apsidal precession induces a self-crossing shock. As a result, the gas gets launched into an outflow that can experience additional interactions, leading to the formation of an accretion disc. We carry out the first radiation-hydrodynamics simulations of this process, making use of the same injection procedure to treat the self-crossing shock as in our previous adiabatic study. Two sets of realistic parameters of the problem are considered that correspond to different strengths of this initial interaction. In both cases, we find that the injected matter has its trajectories promptly circularized by secondary shocks taking place near the black hole. However, the generated internal energy efficiently diffuses away in the form of radiation, which results in a thin vertical profile of the formed disc. The diffusing photons promptly irradiate the surrounding debris until they emerge with a bolometric luminosity of $L\approx 10^{44} \, \rm erg\, s^{-1}$. Towards the self-crossing shock, diffusion is however slowed that results in a shallower luminosity increase, with a potentially significant component in the optical band. Matter launched to large distances continuously gains energy through radiation pressure, which can cause a significant fraction to become unbound. This work provides direct insight into the origin of the early emission from TDEs, which is accessed by a rapidly increasing number of observations.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 531-534 ◽  
Author(s):  
Dheeraj R. Pasham ◽  
Ronald A. Remillard ◽  
P. Chris Fragile ◽  
Alessia Franchini ◽  
Nicholas C. Stone ◽  
...  

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical properties of their black holes.


Sign in / Sign up

Export Citation Format

Share Document