scholarly journals Personalized Recommendation Algorithm for Mobile Based on Federated Matrix Factorization

2021 ◽  
Vol 1802 (3) ◽  
pp. 032021
Author(s):  
Junjie Jia ◽  
Zhipeng Lei
2013 ◽  
Vol 411-414 ◽  
pp. 2223-2228
Author(s):  
Dong Liang Su ◽  
Zhi Ming Cui ◽  
Jian Wu ◽  
Peng Peng Zhao

Nowadays personalized recommendation algorithm of e-commerce can hardly meet the needs of users as an ever-increasing number of users and items in personalized recommender system has brought about sparsity of user-item rating matrix and the emergence of more and more new users has threatened recommender system quality. This paper puts forward a pre-filled collaborative filtering recommendation algorithm based on matrix factorization, pre-filling user-item matrixes by matrix factorization and building nearest-neighbor models according to new user profile information, thus mitigating the influence of matrix sparsity and new users and improving the accuracy of recommender system. The experimental results suggest that this algorithm is more precise and effective than the traditional one under the condition of extremely sparse user-item rating matrix.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


Author(s):  
Wei Peng ◽  
Baogui Xin

AbstractA recommendation can inspire potential demands of users and make e-commerce platforms more intelligent and is essential for e-commerce enterprises’ sustainable development. The traditional social recommendation algorithm ignores the following fact: the preferences of users with trust relationships are not necessarily similar, and the consideration of user preference similarity should be limited to specific areas. To solve these problems mentioned above, we propose a social trust and preference segmentation-based matrix factorization (SPMF) recommendation algorithm. Experimental results based on the Ciao and Epinions datasets show that the accuracy of the SPMF algorithm is significantly superior to that of some state-of-the-art recommendation algorithms. The SPMF algorithm is a better recommendation algorithm based on distinguishing the difference of trust relations and preference domain, which can support commercial activities such as product marketing.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1484-1488
Author(s):  
Yue Kun Fan ◽  
Xin Ye Li ◽  
Meng Meng Cao

Currently collaborative filtering is widely used in e-commerce, digital libraries and other areas of personalized recommendation service system. Nearest-neighbor algorithm is the earliest proposed and the main collaborative filtering recommendation algorithm, but the data sparsity and cold-start problems seriously affect the recommendation quality. To solve these problems, A collaborative filtering recommendation algorithm based on users' social relationships is proposed. 0n the basis of traditional filtering recommendation technology, it combines with the interested objects of user's social relationship and takes the advantage of the tags to projects marked by users and their interested objects to improve the methods of recommendation. The experimental results of MAE ((Mean Absolute Error)) verify that this method can get better quality of recommendation.


Sign in / Sign up

Export Citation Format

Share Document