scholarly journals Bi-axial shear capacity of the tilted solid reinforced concrete beam subject to point loading

2021 ◽  
Vol 1895 (1) ◽  
pp. 012061
Author(s):  
Saad Khalaf Mohaisen ◽  
Waleed A. Waryosh ◽  
Lubna Mohammed yahya
2014 ◽  
Vol 584-586 ◽  
pp. 899-903
Author(s):  
Wei Chen ◽  
Xiang Peng Li ◽  
Ting Ting Chen ◽  
Xiao Yang Wang ◽  
Chao Chao Ma

In order to research the influence of the shear capacity of reinforced concrete beam with the incorporation of basalt fiber, four basalt fiber reinforced concrete beams with parameters of length and volume ratio were designed and made. The fiber lengths were 12mm and 30mm, and the volume ratios were 1‰ and 2‰. The test data of basalt fiber reinforced concrete was obtained through the shear experiments and comparison with the common reinforced concrete beam. The results of the experiment show that the cracking load of the basalt fiber reinforced concrete beam increase obviously with the growing of fiber characteristic parameters, and effectively reduce the diagonal crack width.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1014 ◽  
Author(s):  
Yafei Ma ◽  
Baoyong Lu ◽  
Zhongzhao Guo ◽  
Lei Wang ◽  
Hailong Chen ◽  
...  

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation of the cross-sectional area and strength of the reinforcements induced by corrosion are all considered. An experimental work on two groups accelerated corroded beams was performed. Good agreements were found between the proposed theoretical predictions and experimental observations.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Nurman Chandra ◽  
Ridwan Ridwan ◽  
Muhammad Ikhsan

The increased of loads on existing reinforced concrete infrastructure and the lack of initial design and construction will induce flexural and shear failure. Several methods have been introduced to increase the shear capacity of existing reinforced concrete elements with FRP, involving the use of plates or fabric externally bonded (EB) to the webs of the bridge beams, prestressed straps wrapped around the beams or bars mounted within grooves prepared in the near-surface mounted (NSM) technique. Typical Indonesian concrete bridges consisted main girders connected with diaphragm beams where the distance between those girders are very close. In particular case, where the webs of the beams are difficult to access, a novel approach is introduced, namely deep embedment (DE) method. Three reinforced concrete beam models are prepared for this study. One specimen is the control specimen and identified, as Beam-CS and the other two are the strengthened specimens and identified as Beam-SS-3EB and Beam-SS-5EB. All specimens have the same dimensions and reinforcement configuration. Specimen Beam-SS-3EB was strengthened with three rows of 6 mm embedded plain steel bars while specimen Beam-SS-5EB was strengthened with five rows of 6 mm plain steel bars. The results showed that element size significantly affects the load-displacement curve behaviour. The similarity of the hysteresis curve in the FE analysis using the 25 mm element size suggested a reasonably good agreement between the analytical calculation and the prediction result from the FE analysis. Furthermore, maximum reaction force for Beam-SS-3EB and Beam-SS-5EB were 30.30 kN and 31.77 kN, respectively, represents an increase of 17.67% and 23.29% compared to that of the Beam-CS.


2012 ◽  
Vol 256-259 ◽  
pp. 674-679
Author(s):  
Kun Wang ◽  
Shi Yun Xu ◽  
Hui Hui Luo

Based on the simulated results of joint of SRC beam and RC column (steel reinforced concrete beam and reinforced concrete column) with steel anchor, an analytical research on failure models and shear performance of three types of joints is conducted, which is composed of SRC beam and RC column, of SRC beam and column (steel reinforced concrete beam and column) and of SRC beam and ASC column (steel reinforced concrete beam and angle-steel concrete column). Then the parameters analysis for joint of SRC beam and ASC column is carried out, and the design formula of shear capacity for joint of SRC beam and ASC column is given on account of a great number of calculated and statistic results.


2011 ◽  
Vol 368-373 ◽  
pp. 108-113
Author(s):  
Can Liu ◽  
Bo Wu ◽  
Kai Yan Xu

This paper presents a method that using inner transverse prestressing bars to enhance the shear capacity of concrete beams, which can be used in new transformer beams to decrease the sectional dimensions. Four transversely prestressed concrete beams and one ordinary reinforced concrete beam were tested. The nonlinear finite element method was applied to analyze them, and the following conclusions can be drawn: (a) The transverse prestressing bars can efficiently increase the shear capacity and failure load of the reinforced concrete beam, the improvement effect is more obvious when exerting the prestressing force on them properly. (b) On the whole, the simulated load-deflection relationships and failure loads of the five specimens agree well with the corresponding tested load-deflection relationships and failure loads. It indicated that the FE models used in this paper predict the structural behavior of the transversely prestressed concrete beams satisfactorily. (c) From the contour of first principal stress, it can be seen that the transverse prestressing bars can efficiently enhance the shear crack resistance of the reinforced concrete beams, if the area of transversely prestressing bars is almost same, the transverse bars with smaller diameter and smaller spacing will be better. It agrees well with the test results.


2014 ◽  
Vol 578-579 ◽  
pp. 164-167 ◽  
Author(s):  
Peng Li ◽  
Xian Tang Zhang ◽  
Ming Ping Wang

To investigate the influence of shear span ratio for the shear behavior of reinforced concrete beam with HRBF500 high strength rebars as stirrups, an experiment was carried out, which included 8 simply supported beams with HRBF500 rebars as stirrups. Under concentrated loads, the crack, deflection, strain of rebars, bearing capacity and failure mode are observed under different shear span ratios. Some comparisons are made between test results and calculated outcome. It shows that the shear span ratio has very important influent on the shear behavior of reinforced concrete beam with HRBF500 high strength bars as stirrups. Formula in code for design of concrete structures can be used to calculate its shear capacity with enough safety.


Sign in / Sign up

Export Citation Format

Share Document