scholarly journals Finite Element Modelling of Reinforced Concrete Beam Strengthened with Embedded Steel Reinforcement Bars

2019 ◽  
Vol 1 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Nurman Chandra ◽  
Ridwan Ridwan ◽  
Muhammad Ikhsan

The increased of loads on existing reinforced concrete infrastructure and the lack of initial design and construction will induce flexural and shear failure. Several methods have been introduced to increase the shear capacity of existing reinforced concrete elements with FRP, involving the use of plates or fabric externally bonded (EB) to the webs of the bridge beams, prestressed straps wrapped around the beams or bars mounted within grooves prepared in the near-surface mounted (NSM) technique. Typical Indonesian concrete bridges consisted main girders connected with diaphragm beams where the distance between those girders are very close. In particular case, where the webs of the beams are difficult to access, a novel approach is introduced, namely deep embedment (DE) method. Three reinforced concrete beam models are prepared for this study. One specimen is the control specimen and identified, as Beam-CS and the other two are the strengthened specimens and identified as Beam-SS-3EB and Beam-SS-5EB. All specimens have the same dimensions and reinforcement configuration. Specimen Beam-SS-3EB was strengthened with three rows of 6 mm embedded plain steel bars while specimen Beam-SS-5EB was strengthened with five rows of 6 mm plain steel bars. The results showed that element size significantly affects the load-displacement curve behaviour. The similarity of the hysteresis curve in the FE analysis using the 25 mm element size suggested a reasonably good agreement between the analytical calculation and the prediction result from the FE analysis. Furthermore, maximum reaction force for Beam-SS-3EB and Beam-SS-5EB were 30.30 kN and 31.77 kN, respectively, represents an increase of 17.67% and 23.29% compared to that of the Beam-CS.

2013 ◽  
Vol 351-352 ◽  
pp. 743-746
Author(s):  
Soo Yeon Seo ◽  
Yu Gun Chung

This paper presents an analytical result about strength deterioration of reinforced concrete (RC) beams due to damage by fire. For the evaluation of the result, three RC beam specimens were made and two of those were exposed to fire. And then beam test was performed for those including non-heated specimen to evaluate the strength deterioration due to the fire damage under simple support condition. Strength decrease of materials due to the fire was evaluated through material test for concrete and reinforcements, respectively. Nonlinear Finite element (FE) analysis was performed by considering the decrease of materials due to fire. The analysis results showed that the structural behavior of fire-damaged RC beam was able to be simulated by using FE analysis with consideration of the reduction of material capacity due to fire.


2014 ◽  
Vol 584-586 ◽  
pp. 899-903
Author(s):  
Wei Chen ◽  
Xiang Peng Li ◽  
Ting Ting Chen ◽  
Xiao Yang Wang ◽  
Chao Chao Ma

In order to research the influence of the shear capacity of reinforced concrete beam with the incorporation of basalt fiber, four basalt fiber reinforced concrete beams with parameters of length and volume ratio were designed and made. The fiber lengths were 12mm and 30mm, and the volume ratios were 1‰ and 2‰. The test data of basalt fiber reinforced concrete was obtained through the shear experiments and comparison with the common reinforced concrete beam. The results of the experiment show that the cracking load of the basalt fiber reinforced concrete beam increase obviously with the growing of fiber characteristic parameters, and effectively reduce the diagonal crack width.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2635 ◽  
Author(s):  
Jianting Zhou ◽  
Junli Qiu ◽  
Yingxin Zhou ◽  
Yi Zhou ◽  
Runchuan Xia

This paper presents a nondestructive test method to evaluate the residual bending strength of corroded reinforced concrete beam by analyzing the self-magnetic flux leakage (SMFL) signals. The automatic scanning device was equipped with a micromagnetic sensor and sensor-based experimental details were introduced. Next, the theoretical formula of the normal component HS(z) of the SMFL signal that originated from the corroded region was derived based on the magnetic dipole model and the experimental results were discussed. The results indicate that the experimental data of HS(z) are consistent with the theoretical calculations, both location and extent of the steel bars corrosion can be qualitatively determined by using HS(z). The gradient K of HS(z) is approximately linearly related to the loss rate, S, of the bending strength, which can be used to evaluate the residual bending strength of the corroded reinforced concrete beam. This work lays the foundation for evaluating the residual bending strength of corroded reinforced concrete beams using the SMFL signal; the micromagnetic sensor is further applied to the civil engineering.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1014 ◽  
Author(s):  
Yafei Ma ◽  
Baoyong Lu ◽  
Zhongzhao Guo ◽  
Lei Wang ◽  
Hailong Chen ◽  
...  

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation of the cross-sectional area and strength of the reinforcements induced by corrosion are all considered. An experimental work on two groups accelerated corroded beams was performed. Good agreements were found between the proposed theoretical predictions and experimental observations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
G. R. Vijay Shankar ◽  
D. Suji

Recent earthquakes have demonstrated that most of the reinforced concrete structures were severely damaged; the beam-column joints, being the lateral and vertical load resisting members in reinforced concrete structures, are particularly vulnerable to failures during earthquakes. The existing reinforced concrete beam-column joints are not designed as per code IS13920:1993. Investigation of high performance concrete (HPC) joints with conventional concrete (CC) joints (exterior beam-column) was performed by comparing various reinforcement detailing schemes. Ten specimens were considered in this investigation and the results were compared: four specimens with CC (with and without seismic detailing), four specimens with HPC (with and without seismic detailing), and two specimens with HPC at confinement joint. The test was conducted for lateral load displacement, hysteresis loop, load ratio, percent of initial stiffness versus displacement curve, total energy dissipation, strain in beam main bars, and crack pattern. The results reveal that HPC with seismic detailing will be better compared with other reinforcements details under cyclic loading and reverse cyclic loading.


2012 ◽  
Vol 193-194 ◽  
pp. 852-854
Author(s):  
Wei Hua Chen ◽  
Mei Qin Wu

Some calculated methods of shear capacity of RC beams strengthened with NSM(near-surface mounted) CFRP(Carbon fiber reinforce polymer) rods are reviewed based on the experimental data on shear capacity of RC beams strengthened with NSM CFRP rods. Therefore, according to the destruction forms of steel reinforced concrete beam strengthened with NSM CFRP rods, the formula for calculating the shear capacity of the beam is given. The formula is expressed clearly, simple and easy to use.


Sign in / Sign up

Export Citation Format

Share Document