Finite Element Analysis of Reinforced Concrete Beams with Transversely Prestressed Bars

2011 ◽  
Vol 368-373 ◽  
pp. 108-113
Author(s):  
Can Liu ◽  
Bo Wu ◽  
Kai Yan Xu

This paper presents a method that using inner transverse prestressing bars to enhance the shear capacity of concrete beams, which can be used in new transformer beams to decrease the sectional dimensions. Four transversely prestressed concrete beams and one ordinary reinforced concrete beam were tested. The nonlinear finite element method was applied to analyze them, and the following conclusions can be drawn: (a) The transverse prestressing bars can efficiently increase the shear capacity and failure load of the reinforced concrete beam, the improvement effect is more obvious when exerting the prestressing force on them properly. (b) On the whole, the simulated load-deflection relationships and failure loads of the five specimens agree well with the corresponding tested load-deflection relationships and failure loads. It indicated that the FE models used in this paper predict the structural behavior of the transversely prestressed concrete beams satisfactorily. (c) From the contour of first principal stress, it can be seen that the transverse prestressing bars can efficiently enhance the shear crack resistance of the reinforced concrete beams, if the area of transversely prestressing bars is almost same, the transverse bars with smaller diameter and smaller spacing will be better. It agrees well with the test results.

2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


2014 ◽  
Vol 584-586 ◽  
pp. 899-903
Author(s):  
Wei Chen ◽  
Xiang Peng Li ◽  
Ting Ting Chen ◽  
Xiao Yang Wang ◽  
Chao Chao Ma

In order to research the influence of the shear capacity of reinforced concrete beam with the incorporation of basalt fiber, four basalt fiber reinforced concrete beams with parameters of length and volume ratio were designed and made. The fiber lengths were 12mm and 30mm, and the volume ratios were 1‰ and 2‰. The test data of basalt fiber reinforced concrete was obtained through the shear experiments and comparison with the common reinforced concrete beam. The results of the experiment show that the cracking load of the basalt fiber reinforced concrete beam increase obviously with the growing of fiber characteristic parameters, and effectively reduce the diagonal crack width.


2015 ◽  
Vol 744-746 ◽  
pp. 283-287
Author(s):  
Can Liu

Inner transverse prestressed bars were used to enhance the shear capacity of concrete beams in this paper, which can be used in transformer beams to reduce the sectional size. Two transversely prestressed one ordinary concrete beams were tested and calculated by finite element method, and the following conclusions can be drawn: (a)The shear capacity of transversely prestressed concrete beam increase rapidly with the increase of the prestressing force level, which means that prestressing force level has a great influence on the shear capacity of transversely prestressed concrete beam. (b) The transverse prestressing bars can efficiently enhance the anti-crack performance of the reinforced concrete beams.


Author(s):  
Peter P. Gaigerov

For large-span reinforced concrete beam structures developed by the method of determining the camber due to the prestressing of a steel rope on the concrete. Performed numerical experiments to study the impact of various schemes layout prestressed reinforcement without bonding with concrete on the distribution of the relief efforts along the path of the reinforcement.


2014 ◽  
Vol 578-579 ◽  
pp. 164-167 ◽  
Author(s):  
Peng Li ◽  
Xian Tang Zhang ◽  
Ming Ping Wang

To investigate the influence of shear span ratio for the shear behavior of reinforced concrete beam with HRBF500 high strength rebars as stirrups, an experiment was carried out, which included 8 simply supported beams with HRBF500 rebars as stirrups. Under concentrated loads, the crack, deflection, strain of rebars, bearing capacity and failure mode are observed under different shear span ratios. Some comparisons are made between test results and calculated outcome. It shows that the shear span ratio has very important influent on the shear behavior of reinforced concrete beam with HRBF500 high strength bars as stirrups. Formula in code for design of concrete structures can be used to calculate its shear capacity with enough safety.


2011 ◽  
Vol 243-249 ◽  
pp. 756-760
Author(s):  
Qin Xu ◽  
Wei Huang ◽  
Hao Zhen Wu ◽  
Xiao Ping Jiang ◽  
Zhen Zhong Zhang

Based on bending fiber reinforced concrete beam, through the nonlinear analysis, the paper discuss the constitutive models of concrete and reinforcement, the properties of their element and the models of concrete beams reinforced with FRP bars. Using nonlinear analysis and comparing numerical results with experimental results, the fiber reinforced concrete beam bending terminal numerical model constructed in this paper can simulate the entire process of internal force and deformation of fiber reinforced concrete beams, and describe cracks in the formation and extension and the failure process and failure form, which also can provide enough precision to the practical engineering and scientific research. Meanwhile, the finite element computation model verified by test can provide more reactive information to effective structure computation model.


2021 ◽  
Vol 248 ◽  
pp. 03081
Author(s):  
He Huang ◽  
Chuanlong Zou ◽  
Xiaoguang Liang ◽  
Shan Chen ◽  
Mingmao Li

In order to study the concrete damage in sticked side-plated reinforced concrete beam under static load, a common reinforced concrete beam and a sticked side-plated reinforced concrete beam were designed to conduct finite element comparison experiments. The results show that compared with ordinary reinforced concrete beams, the bearing capacity of sticked side-plated reinforced concrete beam is significantly improved, and the range of concrete tensile damage is significantly reduced. It further verifies that the sticked side-plated reinforced method is effective in reducing concrete tensile damage.


2018 ◽  
Vol 21 (13) ◽  
pp. 1977-1989 ◽  
Author(s):  
Tengfei Xu ◽  
Jiantao Huang ◽  
Arnaud Castel ◽  
Renda Zhao ◽  
Cheng Yang

In this article, experiments focusing at the influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams are reported. In these experiments, the bond between concrete and reinforcing bar was damaged using appreciate flexural loads. The static stiffness of cracked reinforced concrete beam was assessed using the measured load–deflection response under cycles of loading and unloading, and the dynamic stiffness was analyzed using the measured natural frequencies with and without sustained loading. Average moment of inertia model (Castel et al. model) for cracked reinforced beams by taking into account the respective effect of bending cracks (primary cracks) and the steel–concrete bond damage (interfacial microcracks) was adopted to calculate the static load–deflection response and the natural frequencies of the tested beams. The experimental results and the comparison between measured and calculated natural frequencies show that localized steel–concrete bond damage does not influence remarkably the dynamic stiffness and the natural frequencies both with and without sustained loading applied. Castel et al. model can be used to calculate the dynamic stiffness of cracked reinforced concrete beam by neglecting the effect of interfacial microcracks.


2012 ◽  
Vol 214 ◽  
pp. 306-310
Author(s):  
Han Chen Huang

This study proposes a artificial neural network with genetic algorithm (GA-ANN) for predicting the torsional strength of reinforced concrete beam. Genetic algorithm is used to the optimal network structure and parameters. A database of the torsional failure of reinforced concrete beams with a rectangular section subjected to pure torsion was obtained from existing literature for analysis. This study compare the predictions of the GA-ANN model with the ACI 318 code used for analyzing the torsional strength of reinforced concrete beam. The results show that the proposed model provides reasonable predictions of the ultimate torsional strength of reinforced concrete beams and offers superior torsion accuracy compared to that of the ACI 318-89 equation.


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document