scholarly journals Optimization of Marine Debris Collection Routing for Solar and Diesel Hybrid Power Vessels

2021 ◽  
Vol 1903 (1) ◽  
pp. 012051
Author(s):  
Ling Tao ◽  
Gang Duan ◽  
Yuejiao Wei ◽  
Xiaohui Chen ◽  
Tao Fan
Keyword(s):  
2020 ◽  
Vol 3 (1) ◽  
pp. 11-20
Author(s):  
Siska Oktavia ◽  
Wahyu Adi ◽  
Aditya Pamungkas

This study aims to analyze the value of the density of marine debris, perceptions and participation in Temberan beach and Pasir Padi beach, as well as determine the relationship of perception and participation to the density of marine debris. This research is a type of research that is descriptive with a mixed approach (quantitative and qualitative). The study was conducted at Temberan beach in Bangka Regency and Pasir Pasir Beach Pangkal Pinang in October 2019. The sampling technique used was random sampling and purposive sampling. The data collection technique was carried out using observation technique namely sampling and questionnaire. The validity test uses the Pearson Product Moment formula and the reliability test uses the Cronbach’s Alpha formula. The results showed that the density of debris in the Temberan beach was more dominant at 10.92 pieces/meter2, while at Temberan beach 3 pieces/meter2. The results of perception and participation are different, with the Temberan beach occupying more complex waste problems. The relationship of perception and participation in the density of marine debris have a relationship that affects each other.


2019 ◽  
Vol 139 (7) ◽  
pp. 470-477
Author(s):  
Masahiro Sekoguchi ◽  
Tetsuo Yamada ◽  
Yusuke Abe ◽  
Yoshihiro Takada ◽  
Masahiro Yoshioka ◽  
...  
Keyword(s):  

2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


2018 ◽  
Vol 13 (2) ◽  
pp. 107
Author(s):  
Flur Ismagilov ◽  
Vajcheslav Vavilov ◽  
Oksana Yushkova ◽  
Vladimir Bekuzin ◽  
Alexey Veselov

2018 ◽  
Vol 10 (10) ◽  
pp. 45-53
Author(s):  
Kcnstantin L. KOVALEV ◽  
◽  
Vladimir T. PENKIN ◽  
Nikolai S. IVANOV ◽  
Yuliya Yu. NEKRASOVA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document