The accuracy of constant angular displacement of the arm in the horizontal plane as influenced by the direction and locus of the primary adjustive movement.

1956 ◽  
Author(s):  
L. S. Caldwell
1995 ◽  
Vol 32 (1) ◽  
pp. 50-58
Author(s):  
Hirotaka TANAKA ◽  
Kenji HACHISUKA ◽  
Yoshinori IMAMURA ◽  
Hajime OGATA ◽  
Jinro INOUE

2020 ◽  
pp. 3-14
Author(s):  
O. M. Samoylenko ◽  
O. V. Adamenko ◽  
B. P. Kukareka

Reference method for simultaneous calibration of the three and more measurement standards for vertical angle measurement is developed. This method can to use for obtaining the systematic biases of the vertical angles measurements for each of the measuring standards relative of the horizontal plain was averaged from measurement results in time their calibration or comparison. For realization of the reference method was developed the autocollimationel electronic measurement standard for the automatization measurement of the vertical angles SeaLineZero_Standard™ (SLZ_S™). Summary standard deviation (k=1) of the vertical angle measurement relative the horizontal plane, from the results of their calibration by reference method, is not more 0,07ʺ…0,15ʺ. This result was obtained without the use the systematic biases, for each measurement standards, as measurements corrections (with opposite sign). The measuring standards, that were developed and researched, are necessary for obtaining the systematic biases of the vertical angle measurement for total stations and theodolites, that have the normed standard error 0,5ʺ and 1ʺ, when these instruments are calibrating.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


2011 ◽  
Vol 14 (AEROSPACE SCIENCES) ◽  
pp. 1-13
Author(s):  
Rabab Mohamed ◽  
A. El-Butch ◽  
M. Ghobrial ◽  
E. Elhalawany

1979 ◽  
Vol 44 (10) ◽  
pp. 2908-2914 ◽  
Author(s):  
Ondřej Wein

The problem of the oscillatory flow of pseudoplastic liquid in vicinity of the infinitely long horizontal plane is formulated in stresses. For Re i.e. for conditions of oscillatory boundary layer the problem is solved approximately by the Galerkin method.


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


Sign in / Sign up

Export Citation Format

Share Document