scholarly journals Up-conversion photoluminescence specificity of a hybrid sponge nanostructures

2021 ◽  
Vol 2015 (1) ◽  
pp. 012082
Author(s):  
Artem Larin ◽  
Egor Kurganov ◽  
Stephanie Bruyére ◽  
Alexandre Nominé ◽  
Eduard Ageev ◽  
...  

Abstract Over the past decades, silicon is proved to be as a promising material for the development of devices in the fields of nanophotonics and optoelectronics. However, the material so popular at the current time did not find its application in nanoscale radiation sources due to the indirect bandgap of the semiconductor, which leads to low quantum efficiency. This work represents experimental results on the features of the silicon up-conversion photoluminescence enhanced by the optical resonances of the plasmonic nanosponge. The internal configuration of the nanostructure was confirmed by scanning transmission electron microscopy. The optical characterisation was provided by the dark-field spectroscopy, up-conversion photoluminescence generation and life-time measurements. The such new nanostructure type is promising for the development of nanoscale sources of broadband radiation and other applications of silicon photonics.

Author(s):  
Martina Luysberg ◽  
Marc Heggen ◽  
Karsten Tillmann

The FEI Titan Tecnai G2 F20 is a versatile transmission electron microscope which is equipped with a Gatan Tridiem 863P post column image filter (GIF) and a high angle energy dispersive X-ray (EDX) detector. This set up allows for a variety of experiments such as conventional imaging and diffraction, recording of bright- and dark-field scanning transmission electron microscopy (STEM) images, or acquiring elemental maps extracted from energy electron loss spectra (EELS) or EDX signals.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4531
Author(s):  
Maria Meledina ◽  
Geert Watson ◽  
Alexander Meledin ◽  
Pascal Van Der Voort ◽  
Joachim Mayer ◽  
...  

Ru catalyst nanoparticles were encapsulated into the pores of a Cr-based metal-organic framework (MOF)—MIL-101. The obtained material, as well as the non-loaded MIL-101, were investigated down to the atomic scale by annular dark-field scanning transmission electron microscopy using low dose conditions and fast image acquisition. The results directly show that the used wet chemistry loading approach is well-fitted for the accurate embedding of the individual catalyst nanoparticles into the cages of the MIL-101. The MIL-101 host material remains crystalline after the loading procedure, and the encapsulated Ru nanoparticles have a metallic nature. Annular dark field scanning transmission electron microscopy, combined with EDX mapping, is a perfect tool to directly characterize both the embedded nanoparticles and the loaded nanoscale MOFs. The resulting nanostructure of the material is promising because the Ru nanoparticles hosted in the MIL-101 pores are prevented from agglomeration—the stability and lifetime of the catalyst could be improved.


2008 ◽  
Vol 112 (6) ◽  
pp. 1759-1763 ◽  
Author(s):  
Norihiko L. Okamoto ◽  
Bryan W. Reed ◽  
Shareghe Mehraeen ◽  
Apoorva Kulkarni ◽  
David Gene Morgan ◽  
...  

2019 ◽  
Vol 104 (10) ◽  
pp. 1436-1443
Author(s):  
Guanyu Wang ◽  
Hejing Wang ◽  
Jianguo Wen

Abstract Interstratified clay minerals reflect the weathering degree and record climatic conditions and the pedogenic processes in the soil. It is hard to distinguish a few layers of interstratified clay minerals from the chlorite matrix, due to their similar two-dimensional tetrahedral-octahedral-tetrahedral (TOT) structure and electron-beam sensitive nature during transmission electron microscopy (TEM) imaging. Here, we used multiple advanced TEM techniques including low-dose high-resolution TEM (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging combined with energy-dispersive spectroscopic (EDS) mapping to study interstratified layers in a chlo-rite sample from Changping, Beijing, China. We demonstrated an interstratified mica or pyrophyllite monolayer could be well distinguished from the chlorite matrix by projected atomic structures, lattice spacings, and chemical compositions with advanced TEM techniques. Further investigation showed two different transformation mechanisms from mica or pyrophyllite to chlorite: either a 4 Å increase or decrease in the lattice spacing. This characterization approach can be extended to the studies of other electron-beam sensitive minerals.


Author(s):  
Ryosuke S. S. Maki ◽  
Peter E. D. Morgan

Many members of the complex crystalline fluorite supercell structures (e.g. zirconolite, pyrochlore and murataite polytypes) have been considered/studied for possible long-term radioactive-waste immobilization. The eight-coordinated sites in these crystals are of particular importance because they are preferred for the accommodation of trivalent rare earths and actinides present in radioactive waste from fuel element processing. The fluorite-type supercell structures include the murataites, M3, M5, M7, M8, having those numbers of repeating fluorite sub-cell units. One simple technique, as shown here, namely the substitution of Hf into the Zr site, is very helpful for structural analysis in these very complex cases in order to further illuminate the site preference of the Zr ion. Three M3 murataite samples, Ca-Mn-Ti-Zr-Al-Fe-O (regular M3), Ca-Ti-Zr-Al-Fe-O (Mn-free M3) and Ca-Mn-Ti-Hf-Al-Fe-O (Hf-substituted M3) are investigated and, through techniques described for larger cells, show that the Zr is very likely not to be hosted in the [6] Ti site in the M3 murataite structure, as suggested by Pakhomova et al. [(2013), Z. Kristallogr. Cryst. Mater. 228, 151–156], but more likely replaces the [8] Ca1 site and less likely the [8] Ca2 site. This adjusted site preference for each cation from the powder X-ray diffraction (PXRD) and scanning transmission electron microscopy electron energy-loss spectroscopy (STEM-EELS) methods, agrees well with the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image.


Nanoscale ◽  
2019 ◽  
Vol 11 (22) ◽  
pp. 10859-10871
Author(s):  
Gyeong Hee Ryu ◽  
Jun Chen ◽  
Yi Wen ◽  
Si Zhou ◽  
Ren-Jie Chang ◽  
...  

We examine the atomic structure of chemical vapour deposition grown multilayer WS2 pyramids using aberration corrected annular dark field scanning transmission electron microscopy coupled with an in situ heating holder.


Sign in / Sign up

Export Citation Format

Share Document