scholarly journals Nonequilibrium evolution thermodynamic of poly- and two-components alloys affected by severe plastic deformation

2021 ◽  
Vol 2052 (1) ◽  
pp. 012026
Author(s):  
L Metlov ◽  
M Gordey

Abstract The nonequilibrium evolutionary thermodynamics approach is generalized to the case of alloys prone to structural martensitic and diffusion phase transitions in them. A system of kinetic equations is written out to describe the evolution of the density of structural defects, grain boundaries, dislocations and point defects, as well as for the order parameter in the processing of these alloys by the severe plastic deformation way. The approach is illustrated by the numerical experiments results on a specific example of two-component copper-based alloys. Kinetic curves of the evolution of the grain boundaries, dislocations and atoms dissolved in a copper matrix are obtained, qualitative phase diagrams are constructed.

2015 ◽  
Vol 5 ◽  
pp. 111-126
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
I.P. Mishin

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.


2020 ◽  
Vol 51 (9) ◽  
pp. 4674-4684
Author(s):  
Jairo Alberto Muñoz ◽  
Raúl E. Bolmaro ◽  
Alberto Moreira Jorge ◽  
Alexander Zhilyaev ◽  
José María Cabrera

2009 ◽  
Vol 283-286 ◽  
pp. 629-638 ◽  
Author(s):  
Vladimir V. Popov ◽  
Ruslan Valiev ◽  
E.N. Popova ◽  
A.V. Sergeev ◽  
A.V. Stolbovsky ◽  
...  

Submicrocrystalline structure of W obtained by severe plastic deformation (SPD) by high pressure torsion (5 revolutions of anvils at 4000C) and its thermal stability have been examined by TEM. Grain boundaries of submicrocrystalline W have been studied by the method of the emission Mössbauer spectroscopy in the initial state and after annealing at 400-6000С.


2019 ◽  
Vol 64 (6) ◽  
pp. 487
Author(s):  
A. V. Khomenko

In the framework of nonequilibrium evolution thermodynamics, the influence of additive fluctuations on the kinetics of structural defects under severe plastic deformation has been studied. The applied method is a new one for the description of fragmentation modes and corresponding self-organization processes. It is found that a fragmented metallic specimen demonstrates a self-similar behavior, which results in the formation of a grain structure with various grain sizes. Such a behavior takes place provided that the probability distribution for the grain boundary density has a power-law dependence. A comparison of the results obtained in the Itˆo and Stratonovich forms demonstrates the absence of qualitative changes in the behavior of the system.


2016 ◽  
Vol 367 ◽  
pp. 130-139 ◽  
Author(s):  
Vladimir V. Popov ◽  
A.V. Sergeev

The grain-boundary diffusion of Co in ultra-fine grained Mo processed by high-pressure torsion has been studied by emission Mössbauer spectroscopy and radio-tracer analysis. It is demonstrated that under the severe plastic deformation by high-pressure torsion the non-equilibrium grain boundaries are formed which are the ultra-fast diffusion paths. At annealing in the temperature range of 623-823 K the relaxation of the non-equilibrium boundaries proceeds and their properties approach to those of equilibrium boundaries of recrystallization origin.


Sign in / Sign up

Export Citation Format

Share Document